Skip to main content
Log in

Theoretical study on ground-state proton/H-atom exchange in formic acid clusters through different H-bonded bridges

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript


The ground-state triple proton/H-atom transfer (GSTPT/GSTHAT) reactions in HCOOH complexed cyclically with H2O, CH3OH, NH3 and mixed solvents H2O-NH3/CH3OH-NH3 were studied by quantum mechanical methods in heptane. The GSTPT/GSTHAT in HCOOH-(H2O)2, HCOOH-(CH3OH)2, HCOOH-(NH3)2, HCOOH-H2O-NH3, HCOOH-NH3-H2O, HCOOH-CH3OH-NH3 and HCOOH-NH3-CH3 OH systems all occurred in an asynchronous but concerted protolysis mechanism. The formation pattern of the H-bonded chain was important to reduce the proton/H-atom transfer barrier. For the HCOOH-S1-S2 (S1, S2: H2O, CH3OH, NH3) complex, the GSTPT/GSTHAT barrier height of the HCOOH-S1-S2 complex, in which the H-bonded chain was formed with different solvent molecules, was lower than that of HCOOH-S1-S2 complex, in which the H-bonded chain was composed of same solvent molecules. H-bonded chain consisting of mixed solvent molecules can accumulate their proton-accepting abilities and then speed up proton/H-atom transfer. When the less-basic H2O or CH3OH is connected to O-H group of HCOOH directly and the PT/HAT process is started by accepting a proton/H-atom from HCOOH, the PT/HAT reaction would be pulled by the more basic NH3 along the H-bonded chain from the front. On the contrary, when the more-basic NH3 is bonded to O-H group of HCOOH directly, the less-basic H2O or CH3OH hardly pulled PT/HAT process from the front. A good correlation between the proton-accepting ability (basicity) of the H-bonded chain and the GSTPT/GSTHAT barrier height was obtained.

The proton-accepting ability of the hydrogen bonded wire can be denoted as a×β1+b×β2+c×|β12| (a+b+c=1, a=0.15, b=0.35, c=0.5), in which β’s are proton-accepting ability (basicity) of solvents. The larger the proton-accepting ability (basicity) of the H-bonded chain, lower is the barrier height and faster is the proton transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Figure 2
Figure 3

Similar content being viewed by others


  1. Douhal A, Kim S K and Zewail A H 1995 Nature 378 260

    Article  CAS  Google Scholar 

  2. Lu D S and Voth G A 1998 J. Am. Chem. Soc. 120 4006

    Article  CAS  Google Scholar 

  3. Marx D, Tuckerman M E, Hutter J and Parrinello M 1999 Nature 397 601

    Article  CAS  Google Scholar 

  4. Agarwal P K, Webb S P and Hammes-Schiffer S 2000 J. Am. Chem. Soc. 122 4803

    Article  CAS  Google Scholar 

  5. Geissler P L, Dellago C, Chandler D, Hutter J and Parrinello M 2001 Science 291 2121

    Article  CAS  Google Scholar 

  6. Rini M, Magnes B Z, Pines E and Nibbering E T J 2003 Science 301 349

    Article  CAS  Google Scholar 

  7. Chermahini A N and Teimouri A 2014 J. Chem. Sci. 126 273

    Article  Google Scholar 

  8. Klymchenko A S, Kenfack C, Duportail G and Mély Y 2007 J. Chem. Sci. 119 83

    Article  CAS  Google Scholar 

  9. Bountis T 1992 In Proton Transfer in Hydrogen-Bonded Systems (New York: Plenum) pp. 1–15

  10. Kwon O H, Lee Y S, Park H J, Kim Y H and Jang D J 2004 Angew. Chem. Int. Ed. 43 5792

    Article  CAS  Google Scholar 

  11. Kerdpol K, Daengngern R and Kungwan N 2014 Mol. Simul. 41 1177

    Article  Google Scholar 

  12. Tanner C, Manca C and Leutwyler S 2003 Science 302 1736

    Article  CAS  Google Scholar 

  13. Tanner C, Manca C and Leutwyler S 2005 J. Chem. Phys. 122 204326

    Article  Google Scholar 

  14. Tanner C, Thut M, Steinlin A, Manca C and Leutwyler S 2006 J. Phys. Chem. A 110 1758

    Article  CAS  Google Scholar 

  15. Daengngern R, Kerdpol K, Kungwan N, Hannongbua S and Barbatti M 2013 J. Photochem. Photobiol., A 266 28

    Article  CAS  Google Scholar 

  16. Park S Y and Jang D J 2010 J. Am. Chem. Soc. 132 297

    Article  CAS  Google Scholar 

  17. Riccardi D, König P, Prat-Resina X, Yu H, Elstner M, Frauenheim T and Cui Q 2006 J. Am. Chem. Soc. 128 16302

    Article  CAS  Google Scholar 

  18. Mai B K and Kim Y H 2015 RSC Adv. 5 2669

    Article  CAS  Google Scholar 

  19. (a) Bertie J E, Michaelian K H and Eysel H H 1986 J. Chem. Phys. 85 4779; (b) Bertie J E and Michaelian K H 1982 J. Chem. Phys. 76 886; (c) Mullikan R C and Pitzer K S 1958 J. Am. Chem. Soc. 80 3515

  20. (a) Agranat I, Riggs N V and Radom L 1991 J. Chem. Soc., Chem. Commun. 80; (b) Svensson P, Bergman N A and Ahlberg P 1990 J. Chem. Soc., Chem. Commun. 82; (c) Tachibana A, Koizumi M, Tanaka E, Yamabe T and Fukui K 1989 J. Mol. Struct. 200 207; (d) Tachibana A, Ishizuka N and Yamaba T 1991 J. Mol. Struct. 228 259; (e) Topaler M S, Mamaev V M, Gluz Y B, Minkin V I and Simkin B Y 1991 J. Mol. Struct. 236 393; (f) Zielinski T J and Poirier R A 1984 J. Comput. Chem. 5 466; (g) Saritha B and Prasad M D 2012 J. Chem. Sci. 124 209

  21. (a) Chang Y T, Yamaguchi Y, Mille W H and Schaefer III H F 1987 J. Am. Chem. Soc. 109 7245; (b) Shida N, Barbara P F and Almlof J 1991 J. Chem. Phys. 94 3633; (c) Kim Y and Hwang H J 1991 J. Am. Chem. Soc. 121 4669; (d) Simperler A, Mikenda W and Schwarz K 2001 Chem. Eur. J. 7 1606; (e) Kim Y 1996 J. Am. Chem. Soc. 118 1522; (f) Madeja F and Havenith M 2002 J. Chem. Phys. 117 7162; (g) Vener M V, Köhn O and Boman J M 2001 Chem. Phys. Lett. 349 562; (h) Tautermann C S, Voegel A F and Liedl K R 2004 J. Chem. Phys. 120 631; (i) Tautermann C S, Loferer M J, Voegel A F and Liedl K R 2004 J. Chem. Phys. 120 11650; (j) Ushiyama H and Takatsuka K 2001 J. Chem. Phys. 115 5903

  22. Miura S, Tuckerman M E and Klein M L 1998 J. Chem. Phys. 109 5290

    Article  CAS  Google Scholar 

  23. Wolf K, Simperler A and Mikenda W 1999 Monatsh Chem. 130 1031

    CAS  Google Scholar 

  24. Kohanoff J, Koval S, Estrin D A, Laria D and Abashkin Y J 2000 Chem. Phys. 112 9498

    CAS  Google Scholar 

  25. (a) Bell R L and Truong T N 1997 J. Phys. Chem. A 101 7802; (b) Kim Y 1998 J. Phys. Chem. A 102 3025; (c) Kim Y, Lim S, Kim H J and Kim Y 1999 J. Phys. Chem. A 103 617

  26. Mackenzie R B, Dewberry C T and Leopold K R 2014 J. Phys. Chem. A 118 7975

    Article  CAS  Google Scholar 

  27. Becke A D 1993 J. Chem. Phys. 98 5648

    Article  CAS  Google Scholar 

  28. Yanai T, Tew D and Handy N 2004 Chem. Phys. Lett. 51 2393

    Google Scholar 

  29. Frisch M J, Truck G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A J., Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J and Fox D J 2009 In Gaussian 09 (Wallingford, CT: Gaussian, Inc.)

    Google Scholar 

  30. Marenich A V, Cramer C J and Truhlar D G 2009 J. Phys. Chem. B 113 6378

    Article  CAS  Google Scholar 

  31. Labet V, Morell C, Toro-Labbe A and Grand A 2010 Phys. Chem. Chem. Phys. 12 4142

    Article  CAS  Google Scholar 

  32. Marcus Y 1991 J. Phys. Chem. 95 8886

    Article  CAS  Google Scholar 

  33. Apostoluk W 2001 XVI-th ARS SEPARATORIA-Borówno (Poland)

  34. Kamlet M J, Abboud J L M, Abraham M H and Taft R W 1983 J. Org. Chem. 48 2877

    Article  CAS  Google Scholar 

  35. Hunter E P and Lias S G 1998 J. Phys. Chem. Ref. Data 27 413

    Article  CAS  Google Scholar 

  36. Lohr L L 1984 J. Phys. Chem. 88 3607

    Article  CAS  Google Scholar 

  37. Eigen M 1964 Angew. Chem. Int. Ed. Engl. 3 1

    Article  Google Scholar 

  38. Limbach H H, Pietrzak M, Benedict H, Tolstoy P M, Golubev N S and Denisov G S 2004 J. Mol. Struct. 706 115

    Article  CAS  Google Scholar 

  39. Limbach H H, Lopez J M and Kohen A 2006 Phil. Trans. R. Soc. B 361 1399

    Article  CAS  Google Scholar 

  40. Lendvay G 1989 J. Phys. Chem. 93 4422

Download references


This work was supported by the National Nature Science Foundation of China (No. 011101009), the Nature Science Foundation of Jiangsu province (No. 164101920) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, and State Education Ministry (011101011). The author thanks Professor Kim Yongho, working in Department of Applied Chemistry, Kyung Hee University, for providing computing resources.

Author information

Authors and Affiliations


Corresponding author

Correspondence to HUA FANG.

Additional information

Supplementary Information (SI)

Bond distances of reactant, product and TS, barrier heights, imaginary frequencies, rate constants without tunneling effect and Mulliken partial charges obtained at the CAM-B3LYP/6-311 + G(d,p)/SMD level are listed in three tables. The correlation of the H-bond distance with PT/HAT and correlation of the barrier height with the basicity of the H-bonded chain obtained at the CAM-B3LYP/6-311 + G(d,p)/SMD level are shown in two figures. Supplementary Information is available at

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 432 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

FANG, H. Theoretical study on ground-state proton/H-atom exchange in formic acid clusters through different H-bonded bridges. J Chem Sci 128, 1497–1506 (2016).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: