Skip to main content

Synthesis, crystal structure and characterization of new biologically active Cu(II) complexes with ligand derived from N-substituted sulfonamide


A new N-sulfonamide ligand (HL1 = N-(5-(4-methoxyphenyl)-[1,3,4]–thiadiazole–2-yl)-toluenesulfonamide) and two Cu(II) complexes, [Cu(L1)2(py)2] (C1) and [Cu(L2)2(py)2(H2O)] (C2) (HL2 = N-(5-(4-methylphenyl)-[1,3,4]–thiadiazole–2-yl)-benzenesulfonamide) were synthesized. The X-ray crystal structures of the complexes were determined. In the complex C1, the Cu(II) ion is four-coordinated, forming a CuN4 chromophore and in the complex C2, the Cu(II) ion is five-coordinated, forming a CuN4O chromophore. The ligand acts as monodentate, coordinating the Cu(II) ion through a single Nthiadiazole atom. The molecules from the reaction medium (pyridine and water) are also involved in the coordination of the Cu(II) ion. The complexes C1 and C2 are square-planar and a slightly distorted square pyramidal, respectively. The compounds were characterized by FT-IR, electronic, EPR spectroscopic and magnetic methods. The nuclease binding activity studies of the synthesized complexes confirm their capacity to cleave the DNA molecule. The cytotoxicity studies were carried out on melanoma cell line WM35 which confirm that both compounds inhibit the growth of these cells. They have a higher activity compared to a platinum drug, carboplatin.

A new N-sulfonamide ligand (HL1= N-(5-(4-methoxyphenyl)-[1,3,4]–thiadiazole–2-yl)-toluenesulfonamide) and two Cu(II) complexes, [Cu(L1) 2 (py) 2 ] and [Cu(L2) 2 (py) 2 (H 2 O)] (HL2= N-(5-(4-methylphenyl)-[1,3,4]–thiadiazole–2-yl)-benzenesulfonamide) were synthesized.The X-ray crystal structures of the complexes have been determined. Interaction of complexes with the DNA molecule and cytotoxicity studies were carried out.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7


  1. Sorenson J R J 1992 Free Rad. Biol. Med. 13 593

    CAS  Article  Google Scholar 

  2. Sorenson J R J 1989 Prog. Med. Chem. 26 437

    CAS  Article  Google Scholar 

  3. Farrell N 1989 In Transition Metal Complexes as Drugs and Chemotherapeutic Agents (Dordrecht: Kluwer Academic) p. 143

  4. Garcia-Giménez J L, González-Álvarez M and Liu-González M J 2009 Inorg. Biochem. 103 923

    Article  Google Scholar 

  5. Lopez T, Ortiz-Islas E, Guevara P and Gómez E 2013 Int. J. Nanomed. 8 581

    Google Scholar 

  6. Zuo J, Bi C, Fan Y, Buac D, Nardon C, Daniel K G and Dou Q P 2013 J. Inorg. Biochem. 118 83

    CAS  Article  Google Scholar 

  7. Beckford F A, Thessing J, Stott A, Holder A A, Poluektov O G, Li L and Seeram N P 2012 Inorg. Chem. Commun. 15 225

    CAS  Article  Google Scholar 

  8. Buac D, Schmitt S, Ventro G, Kona F R and Dou Q P 2012 Mini Rev. Med. Chem. 12 1193

    CAS  Article  Google Scholar 

  9. Anjomshoa M and Torkzadeh-Mahani M 2015 Spectrochim. Acta, Part A 150 390

    CAS  Article  Google Scholar 

  10. Yousuf I, Arjmand F, Tabassum S, Toupet L, Khan R A and Siddiqui M A 2015 Dalton Trans. 44 10330

    CAS  Article  Google Scholar 

  11. Ma T, Xu J, Wang Y, Yu H, Yang Y, Liu Y, Ding W, Zhu W, Chen R, Ge Z, Tan Y, Jia L and Zhu T 2015 J. Inorg. Biochem. 144 38

    CAS  Article  Google Scholar 

  12. Qi J, Liang S, Gou Y, Zhang Z, Zhou Z, Yang F and Liang H 2015 Eur. J. Med. Chem. 96 360

    CAS  Article  Google Scholar 

  13. Kheirolomoom A, Mahakian L M, Lai C Y, Lindfors H A, Seo J W, Paoli E E, Watson K D, Haynam E M, Ingham E S, Xing L, Cheng R H, Borowsky A D, Cardiff R D and Ferrara K W 2010 Mol. Pharm. 7 1948

    CAS  Article  Google Scholar 

  14. Owa T, Yoshino H, Okauchi T, Yoshimatsu K, Ozawa Y, Sugi N H, Nagasu T, Koyanagi N and Kitoh K 1999 J. Med. Chem. 42 3789

    CAS  Article  Google Scholar 

  15. Hangan A C, Turza A, Stan R L, Stefan R and Oprean L S 2015 Russ. J. Coord. Chem. 41 365

    Article  Google Scholar 

  16. Hangan A, Bodoki A, Oprean L, Alzuet G, Liu-Gonzalez M and Borras J 2010 Polyhedron 29 1305

    CAS  Article  Google Scholar 

  17. Bodoki A, Hangan A, Oprean L, Borras J, Castineiras A and Bojiţă M 2008 Farmacia LVI 607

    Google Scholar 

  18. Hangan A, Bodoki A, Oprean L, Crişan O and Mihalca I 2012 Farmacia LV 932

    Google Scholar 

  19. Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K and Puschmann H 2009 J. Appl. Cryst. 42 339

    CAS  Article  Google Scholar 

  20. Palatinul L and Capuis G 2007 J. Appl. Cryst. 40 786

    Article  Google Scholar 

  21. Sheldrick G M (. 2008 Acta Cryst A64 112

    Article  Google Scholar 

  22. Gonzalez-Alvarez M, Alzuet G, Borras J, Marcia B and Montejo-Bernardo J M 2003 Z. Anorg. Allg. Chem. 23 15

    Google Scholar 

  23. Gutierez L, Alzuet G, Borras J, Liu-Gonzalez M, Sanz F and Castineiras A 2001 Polyhedron 20 703

    Article  Google Scholar 

  24. Macias B, Villa M V, Gomez B, Borras J, Alzuet G, Gonzalez-Alvarez M and Castineiras A 2007 J. Bioinorg. Chem. 101 441

    Google Scholar 

  25. Allen A M, Kennard O and Watson D G 1987 Trans. Perkin. 2 S1

    Article  Google Scholar 

  26. Desiraju G R 2003 In Crystal Design Structure and Function Perspectives in Supramolecular Chemistry (Chichester: John Wiley) p. 160

  27. Koon N, Wong S and Colson D 1984 J. Mol. Spectrosc. 104 129

    Article  Google Scholar 

  28. Thomas A M, Nethaji M and Chakravarty A R 2004 J. Inorg. Biochem. 98 1087

    CAS  Article  Google Scholar 

  29. Cami G E, del C. Ramirez de Arellano M and Fustero S 2006 An. Asoc. Quim. Argent. 941

  30. Alzuet G, Ferrer S and Borras 1993 J. Inorg. Chim. Acta 203 257

    CAS  Article  Google Scholar 

  31. Hathaway B J 1987 In Comprehensive Coordination Chemistry (New York: Wilkinson & Gillard) ch. 9

  32. WINEPR-Simfonia 1.25. 1994-1996 (Bruker Analytik GmbH: Karlsruhe)

  33. Bertini I and Drago R 1980 In ESR and NMR of Paramagnetic Species in Biological and Related Systems (Dordrecht, Holland: Springer Netherlands, D Reidel Publishing Company)

  34. Goodman A and Raynor J B 1970 Adv. Inorg. Chem. Radiochem. 13 135

    CAS  Google Scholar 

  35. Sigman D S 1986 Acc. Chem. Res. 19 180

    CAS  Article  Google Scholar 

  36. Drevensenk P, Zupancic T, Pihlar B, Jerala R, Kolitsch U, Plaper A and Turel I 2005 J. Inorg. Biochem. 99 432

    Article  Google Scholar 

  37. Demeter C A, Pamatong F V and Bocarsly J R 1996 Inorg. Chem. 35 6292

    Article  Google Scholar 

  38. Demeter C A, Pamatong F V and Bocarsly J R 1997 Inorg. Chem. 36 3676

    Article  Google Scholar 

Download references


Adriana Hangan is thankful for the financial support offered by research grant Resurse Umane PNII -PD 474/2010.

Author information

Authors and Affiliations


Corresponding author

Correspondence to ROXANA LIANA STAN.

Additional information

Supplementary Information (SI)

Supplementary material has been deposited with the Cambridge Crystallographic Data Centre (nos. 1408834 (C1), 1410246 (C2) and available free of charge: or All additional information pertaining to characterization of the complexes, namely, 1H-NMR, IR spectra. UV-Vis spectra, and EPR spectra (figures S1S9) are available at

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 1.81 MB)

(DOCX 21.3 KB)

(DOCX 25.1 KB)

(PDF 170 KB)

(PDF 165 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

HANGAN, A.C., TURZA, A., STAN, R.L. et al. Synthesis, crystal structure and characterization of new biologically active Cu(II) complexes with ligand derived from N-substituted sulfonamide. J Chem Sci 128, 815–824 (2016).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Sulfonamide
  • Cu(II) complexes
  • crystal structure
  • oxidative DNA cleavage
  • cytotoxic activity.