Advertisement

Journal of Chemical Sciences

, Volume 128, Issue 6, pp 977–989 | Cite as

Rate coefficients for hydrogen abstraction reaction of pinonaldehyde (C10H16O2) with Cl atoms between 200 and 400 K: A DFT study

  • G SRINIVASULU
  • B RAJAKUMAREmail author
Article
  • 192 Downloads

Abstract

The kinetics of the reaction between pinonaldehyde (C 10 H 16 O 2) and Cl atom were studied using high level ab initio G3(MP2) and DFT based MPWB1K/6-31 + G(d) and MPW1K/6-31 + G(d) levels of theories coupled with Conventional Transition State Theory in the temperature range between 200 and 400 K. The negative temperature dependent rate expression for the title reaction obtained with Wigner’s and Eckart’s symmetrical tunneling corrections are k(T) =(5.1 ± 0.56) × 10 −19 T 2.35exp[(2098 ± 2)/T] cm 3 molecule −1 s −1, and k(T) =(0.92 ± 0.18) × 10 −19 T 2.60exp[(2204 ± 4)/T] cm 3 molecule −1 s −1, respectively, at G3(MP2)//MPWB1K method. The H abstraction reaction from the –CHO group was found to be the most dominant reaction channel among all the possible reaction pathways and its corresponding rate coefficient at 300 K is k(Eckart’s unsymmetrical) = 3.86 ×10−10 cm 3 molecule −1 s −1. Whereas the channel with immediate lower activation energy is the H-abstraction from –CH- group (Tertiary H-abstraction site, C g). The rate coefficient for this channel is k Cg(Eckart’s unsymmetrical) = 1.83 ×10−15 cm 3 molecule −1 s −1 which is smaller than the dominant channel by five orders of magnitude. The atmospherically relevant parameters such as lifetimes were computed in this investigation of its reaction with Cl atom.

Graphical Abstract

The kinetics of the reaction between pinonaldehyde (C10H16O2) and Cl atom were studied computationally and computed the rate coefficients in the temperature range between 200 and 400 K. The H abstraction reaction from the –CHO group is found to be the most dominant reaction channel among all the possible reaction pathways.

Keywords

Pinonaldehyde MPWB1K Kinetics G3(MP2) rate coefficient atmospheric lifetime 

Notes

Acknowledgements

G.S. and B.R. are very grateful to the Ministry of Earth Sciences, Government of India for funding. We thank Mr. V. Ravichandaran, High performance computing centre (HPCE), Indian Institution of Technology Madras, Chennai, for providing us computational facility.

Supplementary material

12039_2016_1075_MOESM1_ESM.docx (186 kb)
(DOCX 186 KB)

References

  1. 1.
    Guenther A, Hewitt C N, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M and McKay W A 1995 J. Geophys. Res. 100 8873CrossRefGoogle Scholar
  2. 2.
    Guenther A, Geron C, Pierce T, Lamb B, Harley P and Fall R 1996 Atmos. Environ. 34 2205CrossRefGoogle Scholar
  3. 3.
    Fall R and Hewitt C N (Ed.) 1999 In Reactive Hydrocarbons in the Atmosphere (San Diego: Academic Press) p. 41Google Scholar
  4. 4.
    Fuentes J D, Lerdau M, Atkinson R, Baldocchi D, Bottenheim J W, Ciccioli P, Lamb B, Geron C, Gu L, Guenther A, Sharkey T D and Stockwell W 2000 B. Am. Met. Soc. 81 1537CrossRefGoogle Scholar
  5. 5.
    Geron C, Rasmussen R, Arnts R R and Guenther A 2000 Atmos. Environ. 34 1761CrossRefGoogle Scholar
  6. 6.
    Atkinson R, Baulch D L, Cox R A, Crowley J N, Hampson R F, Hynes R G, Jenkin M E, Rossi M J and Troe J 2006 Atmos. Chem. Phys. 6 3625CrossRefGoogle Scholar
  7. 7.
    Singh H B, Thakur A N, Chen Y E and Kanakidou M 1996 Geophys. Res. Lett. 23 1523Google Scholar
  8. 8.
    Spicer C W, Chapman E G, Finlayson-Pitts B J, Plastridge R A, Hubbe J M, Fast J D and Berkowitz C M 1998 Nature 394 353CrossRefGoogle Scholar
  9. 9.
    Platt U, Allan W and Lowe D 2004 Atmos. Chem. Phys. 4 2393CrossRefGoogle Scholar
  10. 10.
    Wingenter O W, Kubo M K, Blake N J, Smith Jr. T W, Blake D R and Rowland F S 1996 J. Geophys. Res. 101 4331CrossRefGoogle Scholar
  11. 11.
    Graedel T E and Keene W C 1995 Global Biogeochem. Cycl. 9 47CrossRefGoogle Scholar
  12. 12.
    DeHaan D O, Brauers T, Oum K, Stutz J, Nordmeyer T and Finlayson-Pitts B J 1999 Int. Rev. Phys. Chem. 18 343CrossRefGoogle Scholar
  13. 13.
    Keene W C 1995 In Inorganic C1 Cycling in the Marine Boundary Layer: A Review In Naturally Produced Organohalogens A Grimvall A and E W B de Leer (Eds.) (Dordrecht, The Netherlands: Kluwer Academic) p. 363Google Scholar
  14. 14.
    Keene W C, Jacob D J and Fan S M 1996 Atmos. Environ. 30 R1–R3CrossRefGoogle Scholar
  15. 15.
    DeMore W B, Sander S P, Golden D M, Hampson R F, Kurylo M J, Howard C J, Ravishankara A R, Kolb C E and Molina M J 1997 In Chemical Kinetics a Photochemical Data for Use in Stratospheric Modeling Evaluation Number 12 (California Institute of Technology, Pasadena, CA: J P L Publication) pp. 97-4Google Scholar
  16. 16.
    Atkinson R, Baulch D L, Cox R A, Hampson Jr. R F, Kerr J A, Rossi M J and Troe J 1997 J. Phys. Chem. Ref. Data 26 521CrossRefGoogle Scholar
  17. 17.
    Atkinson R J 1997 J. Phys. Chem. Ref. Data 26 215CrossRefGoogle Scholar
  18. 18.
    Davis M E, Talukdar R K, Notte G, Ellison G B and Burkholder J B 2007 Environ. Sci. Technol. 41 3959CrossRefGoogle Scholar
  19. 19.
    Hallquist M, Wängberg I and Ljungström E 1997 Environ. Sci. Technol. 31 3166CrossRefGoogle Scholar
  20. 20.
    Alvarado A, Arey J and Atkinson R 1998 J. Atmos. Chem. 31 281CrossRefGoogle Scholar
  21. 21.
    Glasius M, Galogirou A, Jensen N R, Hjorth J and Nielsen C J 1997 Int. J. Chem. Kinet. 29 527CrossRefGoogle Scholar
  22. 22.
    Nozière B, Spittler M, Ruppert L, Barnes I, Becker K H, Pons M and Wirtz K 1999 Int. J. Chem. Kinet. 31 291CrossRefGoogle Scholar
  23. 23.
    Lynch B J, Fast P L, Harris M and Truhlar D G 2000 J. Phys. Chem. A 104 4811CrossRefGoogle Scholar
  24. 24.
    Zhao Y and Truhlar D G 2004 J. Phys. Chem. A 108 6908CrossRefGoogle Scholar
  25. 25.
    Frisch M J et al. 2010 Gaussian 09, Revision B.01 (Gaussian, Inc.: Wallingford CTGoogle Scholar
  26. 26.
    Zhao Y, Schultz N E and Truhlar D G 2006 J. Chem. Theor. Comput. 2 364CrossRefGoogle Scholar
  27. 27.
    Chandra A K 2012 J. Mol. Model. 18 4239CrossRefGoogle Scholar
  28. 28.
    Fernandez-Ramos A, Miller J A, Klippenstein S J and Truhlar D G 2006 Chem. Rev. 106 4518CrossRefGoogle Scholar
  29. 29.
    Curtiss L A, Redfern P C, Raghavachari K, Rassolov V and Pople J A 1999 J. Chem. Phys. 110 4703CrossRefGoogle Scholar
  30. 30.
    Dennington I I R, Keith T, Millam J, Eppinnett K, Hovell W L and Gilliland R 2003 GaussView, Version 3.09 (Semichem, Inc.: Shawnee Mission, KS)Google Scholar
  31. 31.
    Wright M R 1999 In Fundamental Chemical Kinetics and Exploratory Introduction to the Concepts (Chichester UK: Ellis Horwood)Google Scholar
  32. 32.
    Ralchenko Y, Jou F C, Kelleher D E, Kramida A E, Musgrove A, Reader J, Wiese W L and Olsen K 2007 NIST Atomic Spectra Database, version 3.1.2 (National Institute of Standards and Technology: Gaithersburg, MD)Google Scholar
  33. 33.
    Wigner E P Z 1932 Phys. Chem. B 19 203Google Scholar
  34. 34.
    Eckart C 1930 Phys. Rev. 35 1303CrossRefGoogle Scholar
  35. 35.
    Johnston H S and Heicklen J 1962 J. Phys. Chem. 66 532CrossRefGoogle Scholar
  36. 36.
    Louis F, Gonzalez C A, Huie R E and Kurylo M J 2000 J. Phys. Chem. A 104 8773CrossRefGoogle Scholar
  37. 37.
    Ali M A and Rajakumar B 2010 J. Comput. Chem. 31 500Google Scholar
  38. 38.
    Ali M A and Rajakumar B 2010 J. Mol. Struct: THEOCHEM 949 73CrossRefGoogle Scholar
  39. 39.
    Kaliginedi V, Ali M A and Rajakumar B 2012 Int. J. Quantum Chem. 112 1066CrossRefGoogle Scholar
  40. 40.
    Ali M A and Rajakumar B 2011 Int. J. Chem. Kinet. 43 418CrossRefGoogle Scholar
  41. 41.
    Ali M A, Upendra B and Rajakumar B 2011 Chem. Phys. Lett. 511 440CrossRefGoogle Scholar
  42. 42.
    Dash M R and Rajakumar B 2012 J. Phys. Chem. A 116 5856CrossRefGoogle Scholar
  43. 43.
    Korchowiec J, Kawahara S I, Matsumura K, Uchimara T and Surgie M 1999 J. Phys. Chem. A 103 3548CrossRefGoogle Scholar
  44. 44.
    Chandra A K and Uchimaru T 2000 J. Phys. Chem. A 104 8535CrossRefGoogle Scholar
  45. 45.
    Alvarez-Idaboy J R, Cruz-Torres A, Galano A and Ruiz-Santoyo M E 2004 J. Phys. Chem. A 108 2740CrossRefGoogle Scholar
  46. 46.
    Zhang M, Lin Z and Song C 2007 J. Chem. Phys. 126 34307CrossRefGoogle Scholar
  47. 47.
    Chuang Y and Truhlar D G 2000 J. Chem. Phys. 112 1221CrossRefGoogle Scholar
  48. 48.
    Gruber-Stadler M, Mühlhäuser M, Sellevåg S R and Nielsen C J 2008 J. Phys. Chem. A 112 9CrossRefGoogle Scholar
  49. 49.
    Beukes J A, D’Anna B, Bakken V and Nielsen C J 2000 Phys. Chem. Chem. Phys. 2 4049CrossRefGoogle Scholar
  50. 50.
    Alvarez-Idaboy J R, Mora-Diez N, Boyd R J and Vivier-Bunge A 2001 J. Am. Chem. Soc. 123 2018CrossRefGoogle Scholar
  51. 51.
    Alvarez-Idaboy J R, Mora-Diez N and Vivier-Bunge A 2000 J. Am. Chem. Soc. 122 3715CrossRefGoogle Scholar
  52. 52.
    Galano A, Alvarez-Idaboy J R, Ruiz-Santoyo M. E. and Vivier-Bunge A 2005 J. Phys. Chem. A 109 169CrossRefGoogle Scholar
  53. 53.
    Vereecken L and Peeters J 2002 Phys. Chem. Chem. Phys. 4 467CrossRefGoogle Scholar
  54. 54.
    Wang Y, Liu J -y, Li Z., Wang L, Wu J -y and Sun C -c 2006 J. Phys. Chem. A 110 5853CrossRefGoogle Scholar
  55. 55.
    Sun H and Law C K 2010 J. Phys. Chem. A 114 12088CrossRefGoogle Scholar
  56. 56.
    Gao H, Liu J -y and Sun C -c 2009 J. Chem. Phys. 130 224301CrossRefGoogle Scholar
  57. 57.
    Srinivasulu G and Rajakumar B 2013 J. Phys. Chem. A 117 4534CrossRefGoogle Scholar
  58. 58.
    Aschmann S M and Atkinson R 1995 Int. J. Chem. Kinet. 27 613CrossRefGoogle Scholar
  59. 59.
    Tyndall G S, Orlando J J, Wallington T J, Dill M and Kaiser E W 1997 Int. J. Chem. Kinet. 29 43CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2016

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations