Kinetics of the thermal decomposition of tetramethylsilane behind the reflected shock waves between 1058 and 1194 K

Abstract

Thermal decomposition of tetramethylsilane (TMS) diluted in argon was studied behind the reflected shock waves in a single pulse shock tube (SPST) in the temperature range of 1058–1194 K. The major products formed in the decomposition are methane (CH 4) and ethylene (C 2 H 4); whereas ethane and propylene were detected in lower concentrations. The decomposition of TMS seems to be initiated via Si-C bond scission by forming methyl radicals (CH 3) and trimethylsilyl radicals ((CH 3) 3Si). The total rate coefficients obtained for the decomposition of TMS were fit to Arrhenius equation in two different temperature regions 1058–1130 K and 1130–1194 K. The temperature dependent rate coefficients obtained are k total (1058–1130 K) = (4.61±0.70) ×1018 exp (−(79.9 kcal mol −1±3.5)/RT) s −1, k total (1130-1194 K) = (1.33 ± 0.19) ×106 exp (−(15.3 kcal mol −1±3.5)/RT) s −1. The rate coefficient for the formation of CH 4 is obtained to be k methane (1058–1194 K) = (4.36 ± 1.23) ×1014 exp (−(61.9 kcal mol −1±4.9)/RT) s −1. A kinetic scheme containing 21 species and 38 elementary reactions was proposed and simulations were carried out to explain the formation of all the products in the decomposition of tetramethylsilane.

Thermal decomposition of tetramethylsilane diluted in argon was studied behind the reflected shock waves in a single pulse shock tube in the temperature range of 1058-1194 K. The major products formed in the decomposition are methane and ethylene; whereas ethane and propylene were detected in lower concentrations. The total rate coefficients obtained for the decomposition of TMS and the rate coefficient for the formation of methane are reported in this paper.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

References

  1. 1.

    Herlin N, Lefebvre M, Pealat M and Perrin J 1992 J. Phys. Chem. 96 7063

    CAS  Article  Google Scholar 

  2. 2.

    Chaussende D, Ucar M, Auvray L, Baillet F, Pons M and Madar R 2005 Cryst. Growth Des. 5 1539

    CAS  Article  Google Scholar 

  3. 3.

    Muller S G, Brady M F, Burk A A, Hobgood H M, Jenny J R, Leonard R T, Malta D P, Powell A R, Sumakeris J J, Tsvetkov V F and Carter C H 2006 Superattices Microstruct. 40 195

    Article  Google Scholar 

  4. 4.

    Powell J A, Matus L G, Harris G L and Yang C Y W 1989 In Amorphous and Crystalline Silicon Carbide Springer Proceedings in Physics Vol. 34 (Berlin: Springer)

  5. 5.

    Golecki I, Reidinger F and Marti J 1992 Appl. Phys. Lett. 60 1703

    CAS  Article  Google Scholar 

  6. 6.

    Avigal Y, Schieber M and Levin R 1974 J. Cryst. Growth 24/25 188

    Article  Google Scholar 

  7. 7.

    Chappell M J and Millman R S 1974 J. Mater. Sci. 9 1933

    CAS  Article  Google Scholar 

  8. 8.

    Nam D H, Kim B G, Yoon J Y, Lee M H, Seo W S, Jeong S M, Yang C W and Lee W J 2014 Cryst. Growth Des. 14 5569

    CAS  Article  Google Scholar 

  9. 9.

    Seo Y H, Nahma K S, Suh E K, Lee H J and Hwang Y G J 1997 Vac. Sci. Technol. A 15 2226

    CAS  Article  Google Scholar 

  10. 10.

    Herlin N, Lefebvre M, Pealat M and Perrin J 1992 J. Phys. Chem. 96 7063

    CAS  Article  Google Scholar 

  11. 11.

    Avigal Y and Schieber M 1971 J. Cryst. Growth 9 127

    CAS  Article  Google Scholar 

  12. 12.

    Figueras R A, Garelik S, Santiso J, Rodroguez-Clemente R, Armas B, Combescure Berjoan C, Saurel J M and Caplain R 1992 Mater. Sci. Eng. B 11 83

    Article  Google Scholar 

  13. 13.

    Seong-Min J, Kyung-Hun K, Young J Y, Myung-Hyun L and Won-Seon S 2012 J. Cryst. Growth 357 48

    Article  Google Scholar 

  14. 14.

    Schalla R L, McDonald G E and Gerstein M 1955 Symp. (Int.) Combust. 5 705

    Article  Google Scholar 

  15. 15.

    Gerhold B W and Inkrott K E 2006 Combust. Flame 146 407

    Article  Google Scholar 

  16. 16.

    Cullis C F, Herron D and Hirschler M M 1985 Combust. Flame 59 151

    CAS  Article  Google Scholar 

  17. 17.

    Wrobel A M, Czeremuszkin G, Szymanowski H and Kowalski J 1990 Plasma Chem. Plasma Process. 10 277

    CAS  Article  Google Scholar 

  18. 18.

    Helm D F and Mack E 1937 J. Am. Chem. Soc. 59 60

    CAS  Article  Google Scholar 

  19. 19.

    Clifford R P, Gowenlock B G, Johnson C A F and Stevenson J 1972 J. Organomet. Chem. 34 53

    CAS  Article  Google Scholar 

  20. 20.

    Baldwin A C, Davidson I M T and Reed M D 1978 J. Chem. Soc., Faraday Trans. 174 2171

    Article  Google Scholar 

  21. 21.

    Taylor J E and Milazzo T S 1978 J. Phys. Chem. 82 847

    CAS  Article  Google Scholar 

  22. 22.

    Doncaster A M and Walsh R 1976 J. Chem. Soc., Faraday Trans. 72 2908

    CAS  Article  Google Scholar 

  23. 23.

    Tschuikow-Roux E 1965 Phys. Fluids 8 821

    Article  Google Scholar 

  24. 24.

    Tschuikow-Roux E, Sirnrnie J M and Quirring W J 1970 Astronaut. Acta 15 511

    CAS  Google Scholar 

  25. 25.

    Lifshitz A, Bauer A H and Resler E L 1963 J. Chem. Phys. 38 2056

    CAS  Article  Google Scholar 

  26. 26.

    Rajakumar B, Reddy K P J and Arunan E 2002 J. Phys. Chem. A 106 8366

    CAS  Article  Google Scholar 

  27. 27.

    Gaydon A G and Hurle I R 1963 In The shock tube in high temperature chemical physics (New York: Reinhold Publishing)

  28. 28.

    Shock Waves @ Marseille I: Hypersonics, Shock Tube & Shock Tunnel Flow R Brun and L Z Dumitrescu 1995 (Eds.) (Berlin: Springer-Verlag)

  29. 29.

    Bershader D and Hanson R 1987 Astrophys. Space Sci. 138 426

    Google Scholar 

  30. 30.

    Mirels H 1964 AIAA Journal 2 84

    Article  Google Scholar 

  31. 31.

    Li S, Ren W, Davidson D F and Hanson R K 2012 In Boundary Layer Effects behind Incident and Reflected Shock Waves in a Shock Tube 28th International Symposium on Shock Waves (Berlin: Springer) Vol. 2 p. 471

  32. 32.

    Lifshitz A, Tamburu C, Suslensky A and Dubnikova F 2006 J. Phys. Chem. A 110 11677

    CAS  Article  Google Scholar 

  33. 33.

    Manion J A and Awan I A 2013 Proc. Combust. Inst. 34 537

    CAS  Article  Google Scholar 

  34. 34.

    Herzler J, Manion J A and Tsang W 1997 J. Phys. Chem. A 101 5500

    CAS  Article  Google Scholar 

  35. 35.

    Rosado-Reyes C M and Tsang W 2012 J. Phys. Chem. A 116 9599

    CAS  Article  Google Scholar 

  36. 36.

    Stranic I, Davidson D F and Hanson R K 2013 Chem. Phys. Lett. 584 18

    CAS  Article  Google Scholar 

  37. 37.

    Skinner G B and Sokoloski E M 1960 J. Phys. Chem. 64 1028

    CAS  Article  Google Scholar 

  38. 38.

    Hidaka Y, Higashihara T, Ninomiya N, Masaoka H, Nakamura T and Kawano H 1996 Int. J. Chem. Kinet. 28 137

    CAS  Article  Google Scholar 

  39. 39.

    Lifshitz A, Tamburu C, Suslensky A and Dubnikova F 2004 J. Phys. Chem. A 108 3430

    CAS  Article  Google Scholar 

  40. 40.

    Tsang W 1965 J. Chem. Phys. 44 4283

    Article  Google Scholar 

  41. 41.

    Taylor J E, Hutchings D A and Frech K J 1969 J. Am. Chem. Soc. 91 2215

    CAS  Article  Google Scholar 

  42. 42.

    Sivaramakrishnan R, Michael J V, Harding L B and Klippenstein S J 2012 J. Phys. Chem. A 116 5981

    CAS  Article  Google Scholar 

  43. 43.

    Pacey P D 1973 Can. J. Chem. 51 2415

    CAS  Article  Google Scholar 

  44. 44.

    Chemical Kinetics Simulator 1.0. 1995 IBM Almaden research center, IBM Corporation

  45. 45.

    Berkley R E, Safarik I, Gunning H E and Strausz O P 1973 J. Phys. Chem. 77 1734

    CAS  Article  Google Scholar 

  46. 46.

    Oueslati I, Kerkeni B, Spielfiedel A, Tchang-Brillet W and Feautrier N 2014 J. Phys. Chem. A 118 1089

    Article  Google Scholar 

  47. 47.

    Wang B S, Hou H, Yoder L M, Muckerman J T and Fockenberg C 2003 J. Phys. Chem. A 107 11414

    CAS  Article  Google Scholar 

  48. 48.

    Davidson D F, Di Rosa M D, Chang E J, Hanson R K and Bowman C T 1995 Int. J. Chem. Kinet. 27 1179

    CAS  Article  Google Scholar 

  49. 49.

    Kern R D, Singh H J and Wu C H 1988 Int. J. Chem. Kinet. 20 731

    CAS  Article  Google Scholar 

  50. 50.

    Lifshitz A, Tamburu C and Suslensky A 1990 J. Phys. Chem. 94 2966

    CAS  Article  Google Scholar 

  51. 51.

    Yampolskii Y P and Rybin V M 1973 React. Kinet. Catal. Lett. 1 321

    Article  Google Scholar 

  52. 52.

    Curran H J 2006 Int. J. Chem. Kinet. 38 250

    CAS  Article  Google Scholar 

  53. 53.

    Baulch D L, Cobos C J, Cox R A, Esser C, Frank P, Just T, Kerr J A, Pilling M J, Troe J, Walker R W and Warnatz J 1992 J. Phys. Chem. Ref. Data 21 411

    CAS  Article  Google Scholar 

  54. 54.

    Du H and Hessler J P 1992 J. Chem. Phys. 96 1077

    CAS  Article  Google Scholar 

  55. 55.

    Hidaka Y, Nakamura T, Tanaka H, Jinno A and Kawano H 1992 Int. J. Chem. Kinet. 24 761

    CAS  Article  Google Scholar 

  56. 56.

    Skinner G B and Ruehrwein R A 1959 J. Phys. Chem 63 1736

    CAS  Article  Google Scholar 

  57. 57.

    Blackmore D R and Hinshelwood C 1963 Proc. R. Soc. London A 271 34

    CAS  Article  Google Scholar 

  58. 58.

    Knyazev V D, Bencsura A, Stoliarov S I and Slagle I R 1996 J. Phys. Chem. 100 11346

    CAS  Article  Google Scholar 

  59. 59.

    Lim K P and Michael J V 1994 Symp. Int. Combust. Proc. 25 713

    Article  Google Scholar 

  60. 60.

    Sivaramakrishnan R, Su M C, Michael J V, Klippenstein S J, Harding L B and Ruscic B 2011 J. Phys. Chem. A 115 3366

    CAS  Article  Google Scholar 

  61. 61.

    Tsang W and Hampson R F 1986 J. Phys. Chem. Ref. Data 15 1087

    CAS  Article  Google Scholar 

  62. 62.

    Markus M W, Woiki D and Roth P 1992 Symp. Int. Combust. Proc. 24 581

    Article  Google Scholar 

  63. 63.

    Sutherland J W, Su M C and Michael J V 2001 Int. J. Chem. Kinet. 33 669

    CAS  Article  Google Scholar 

  64. 64.

    Zhang H X and Back M H 1990 Int. J. Chem. Kinet. 22 21

    CAS  Article  Google Scholar 

  65. 65.

    Tsang W, Cui J P and Walker J A 1990 Proceedings of the 17th International Symposium on Shock Waves & Shock Tubes American Institute of Physics (New York) p. 63

  66. 66.

    Loser U, Scherzer K and Weber K 1989 Z. Phys. Chem. 270 237

    Google Scholar 

  67. 67.

    Curran H J 2006 Int. J. Chem. Kinet. 38 250

    CAS  Article  Google Scholar 

  68. 68.

    Konar R S, Marshall R M and Purnell J H 1968 Trans. Faraday Soc. 64 405

    CAS  Article  Google Scholar 

  69. 69.

    Tsang W 1988 J. Phys. Chem. Ref. Data 17 887

    CAS  Article  Google Scholar 

  70. 70.

    Zheng X B and Blowers P 2006 Ind. Eng. Chem. Res. 45 530

    CAS  Article  Google Scholar 

  71. 71.

    Tsang W 1991 J. Phys. Chem. Ref. Data 20 221

    CAS  Article  Google Scholar 

Download references

Acknowledgments

B.R. thanks Council of Scientific and Industrial Research (CSIR), Government of India for funding. A.P. is very grateful to CSIR for providing a research fellowship. A.P. also thank Mr. G. Sudhakar and Mr. M. Balaganesh for fruitful discussions and their help.

Author information

Affiliations

Authors

Corresponding author

Correspondence to B RAJAKUMAR.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

PARANDAMAN, A., RAJAKUMAR, B. Kinetics of the thermal decomposition of tetramethylsilane behind the reflected shock waves between 1058 and 1194 K. J Chem Sci 128, 573–588 (2016). https://doi.org/10.1007/s12039-016-1046-8

Download citation

Keywords

  • tetramethylsilane
  • single pulse shock tube
  • decomposition
  • shock wave
  • simulation