Advertisement

Journal of Chemical Sciences

, Volume 128, Issue 4, pp 573–588 | Cite as

Kinetics of the thermal decomposition of tetramethylsilane behind the reflected shock waves between 1058 and 1194 K

  • A PARANDAMAN
  • B RAJAKUMAREmail author
Article

Abstract

Thermal decomposition of tetramethylsilane (TMS) diluted in argon was studied behind the reflected shock waves in a single pulse shock tube (SPST) in the temperature range of 1058–1194 K. The major products formed in the decomposition are methane (CH 4) and ethylene (C 2 H 4); whereas ethane and propylene were detected in lower concentrations. The decomposition of TMS seems to be initiated via Si-C bond scission by forming methyl radicals (CH 3) and trimethylsilyl radicals ((CH 3) 3Si). The total rate coefficients obtained for the decomposition of TMS were fit to Arrhenius equation in two different temperature regions 1058–1130 K and 1130–1194 K. The temperature dependent rate coefficients obtained are k total (1058–1130 K) = (4.61±0.70) ×1018 exp (−(79.9 kcal mol −1±3.5)/RT) s −1, k total (1130-1194 K) = (1.33 ± 0.19) ×106 exp (−(15.3 kcal mol −1±3.5)/RT) s −1. The rate coefficient for the formation of CH 4 is obtained to be k methane (1058–1194 K) = (4.36 ± 1.23) ×1014 exp (−(61.9 kcal mol −1±4.9)/RT) s −1. A kinetic scheme containing 21 species and 38 elementary reactions was proposed and simulations were carried out to explain the formation of all the products in the decomposition of tetramethylsilane.

Graphical Abstract

Thermal decomposition of tetramethylsilane diluted in argon was studied behind the reflected shock waves in a single pulse shock tube in the temperature range of 1058-1194 K. The major products formed in the decomposition are methane and ethylene; whereas ethane and propylene were detected in lower concentrations. The total rate coefficients obtained for the decomposition of TMS and the rate coefficient for the formation of methane are reported in this paper.

Keywords

tetramethylsilane single pulse shock tube decomposition shock wave simulation 

Notes

Acknowledgments

B.R. thanks Council of Scientific and Industrial Research (CSIR), Government of India for funding. A.P. is very grateful to CSIR for providing a research fellowship. A.P. also thank Mr. G. Sudhakar and Mr. M. Balaganesh for fruitful discussions and their help.

References

  1. 1.
    Herlin N, Lefebvre M, Pealat M and Perrin J 1992 J. Phys. Chem. 96 7063CrossRefGoogle Scholar
  2. 2.
    Chaussende D, Ucar M, Auvray L, Baillet F, Pons M and Madar R 2005 Cryst. Growth Des. 5 1539CrossRefGoogle Scholar
  3. 3.
    Muller S G, Brady M F, Burk A A, Hobgood H M, Jenny J R, Leonard R T, Malta D P, Powell A R, Sumakeris J J, Tsvetkov V F and Carter C H 2006 Superattices Microstruct. 40 195CrossRefGoogle Scholar
  4. 4.
    Powell J A, Matus L G, Harris G L and Yang C Y W 1989 In Amorphous and Crystalline Silicon Carbide Springer Proceedings in Physics Vol. 34 (Berlin: Springer)Google Scholar
  5. 5.
    Golecki I, Reidinger F and Marti J 1992 Appl. Phys. Lett. 60 1703CrossRefGoogle Scholar
  6. 6.
    Avigal Y, Schieber M and Levin R 1974 J. Cryst. Growth 24/25 188CrossRefGoogle Scholar
  7. 7.
    Chappell M J and Millman R S 1974 J. Mater. Sci. 9 1933CrossRefGoogle Scholar
  8. 8.
    Nam D H, Kim B G, Yoon J Y, Lee M H, Seo W S, Jeong S M, Yang C W and Lee W J 2014 Cryst. Growth Des. 14 5569CrossRefGoogle Scholar
  9. 9.
    Seo Y H, Nahma K S, Suh E K, Lee H J and Hwang Y G J 1997 Vac. Sci. Technol. A 15 2226CrossRefGoogle Scholar
  10. 10.
    Herlin N, Lefebvre M, Pealat M and Perrin J 1992 J. Phys. Chem. 96 7063CrossRefGoogle Scholar
  11. 11.
    Avigal Y and Schieber M 1971 J. Cryst. Growth 9 127CrossRefGoogle Scholar
  12. 12.
    Figueras R A, Garelik S, Santiso J, Rodroguez-Clemente R, Armas B, Combescure Berjoan C, Saurel J M and Caplain R 1992 Mater. Sci. Eng. B 11 83CrossRefGoogle Scholar
  13. 13.
    Seong-Min J, Kyung-Hun K, Young J Y, Myung-Hyun L and Won-Seon S 2012 J. Cryst. Growth 357 48CrossRefGoogle Scholar
  14. 14.
    Schalla R L, McDonald G E and Gerstein M 1955 Symp. (Int.) Combust. 5 705CrossRefGoogle Scholar
  15. 15.
    Gerhold B W and Inkrott K E 2006 Combust. Flame 146 407CrossRefGoogle Scholar
  16. 16.
    Cullis C F, Herron D and Hirschler M M 1985 Combust. Flame 59 151CrossRefGoogle Scholar
  17. 17.
    Wrobel A M, Czeremuszkin G, Szymanowski H and Kowalski J 1990 Plasma Chem. Plasma Process. 10 277CrossRefGoogle Scholar
  18. 18.
    Helm D F and Mack E 1937 J. Am. Chem. Soc. 59 60CrossRefGoogle Scholar
  19. 19.
    Clifford R P, Gowenlock B G, Johnson C A F and Stevenson J 1972 J. Organomet. Chem. 34 53CrossRefGoogle Scholar
  20. 20.
    Baldwin A C, Davidson I M T and Reed M D 1978 J. Chem. Soc., Faraday Trans. 174 2171CrossRefGoogle Scholar
  21. 21.
    Taylor J E and Milazzo T S 1978 J. Phys. Chem. 82 847CrossRefGoogle Scholar
  22. 22.
    Doncaster A M and Walsh R 1976 J. Chem. Soc., Faraday Trans. 72 2908CrossRefGoogle Scholar
  23. 23.
    Tschuikow-Roux E 1965 Phys. Fluids 8 821CrossRefGoogle Scholar
  24. 24.
    Tschuikow-Roux E, Sirnrnie J M and Quirring W J 1970 Astronaut. Acta 15 511Google Scholar
  25. 25.
    Lifshitz A, Bauer A H and Resler E L 1963 J. Chem. Phys. 38 2056CrossRefGoogle Scholar
  26. 26.
    Rajakumar B, Reddy K P J and Arunan E 2002 J. Phys. Chem. A 106 8366CrossRefGoogle Scholar
  27. 27.
    Gaydon A G and Hurle I R 1963 In The shock tube in high temperature chemical physics (New York: Reinhold Publishing)Google Scholar
  28. 28.
    Shock Waves @ Marseille I: Hypersonics, Shock Tube & Shock Tunnel Flow R Brun and L Z Dumitrescu 1995 (Eds.) (Berlin: Springer-Verlag)Google Scholar
  29. 29.
    Bershader D and Hanson R 1987 Astrophys. Space Sci. 138 426Google Scholar
  30. 30.
    Mirels H 1964 AIAA Journal 2 84CrossRefGoogle Scholar
  31. 31.
    Li S, Ren W, Davidson D F and Hanson R K 2012 In Boundary Layer Effects behind Incident and Reflected Shock Waves in a Shock Tube 28th International Symposium on Shock Waves (Berlin: Springer) Vol. 2 p. 471Google Scholar
  32. 32.
    Lifshitz A, Tamburu C, Suslensky A and Dubnikova F 2006 J. Phys. Chem. A 110 11677CrossRefGoogle Scholar
  33. 33.
    Manion J A and Awan I A 2013 Proc. Combust. Inst. 34 537CrossRefGoogle Scholar
  34. 34.
    Herzler J, Manion J A and Tsang W 1997 J. Phys. Chem. A 101 5500CrossRefGoogle Scholar
  35. 35.
    Rosado-Reyes C M and Tsang W 2012 J. Phys. Chem. A 116 9599CrossRefGoogle Scholar
  36. 36.
    Stranic I, Davidson D F and Hanson R K 2013 Chem. Phys. Lett. 584 18CrossRefGoogle Scholar
  37. 37.
    Skinner G B and Sokoloski E M 1960 J. Phys. Chem. 64 1028CrossRefGoogle Scholar
  38. 38.
    Hidaka Y, Higashihara T, Ninomiya N, Masaoka H, Nakamura T and Kawano H 1996 Int. J. Chem. Kinet. 28 137CrossRefGoogle Scholar
  39. 39.
    Lifshitz A, Tamburu C, Suslensky A and Dubnikova F 2004 J. Phys. Chem. A 108 3430CrossRefGoogle Scholar
  40. 40.
    Tsang W 1965 J. Chem. Phys. 44 4283CrossRefGoogle Scholar
  41. 41.
    Taylor J E, Hutchings D A and Frech K J 1969 J. Am. Chem. Soc. 91 2215CrossRefGoogle Scholar
  42. 42.
    Sivaramakrishnan R, Michael J V, Harding L B and Klippenstein S J 2012 J. Phys. Chem. A 116 5981CrossRefGoogle Scholar
  43. 43.
    Pacey P D 1973 Can. J. Chem. 51 2415CrossRefGoogle Scholar
  44. 44.
    Chemical Kinetics Simulator 1.0. 1995 IBM Almaden research center, IBM CorporationGoogle Scholar
  45. 45.
    Berkley R E, Safarik I, Gunning H E and Strausz O P 1973 J. Phys. Chem. 77 1734CrossRefGoogle Scholar
  46. 46.
    Oueslati I, Kerkeni B, Spielfiedel A, Tchang-Brillet W and Feautrier N 2014 J. Phys. Chem. A 118 1089CrossRefGoogle Scholar
  47. 47.
    Wang B S, Hou H, Yoder L M, Muckerman J T and Fockenberg C 2003 J. Phys. Chem. A 107 11414CrossRefGoogle Scholar
  48. 48.
    Davidson D F, Di Rosa M D, Chang E J, Hanson R K and Bowman C T 1995 Int. J. Chem. Kinet. 27 1179CrossRefGoogle Scholar
  49. 49.
    Kern R D, Singh H J and Wu C H 1988 Int. J. Chem. Kinet. 20 731CrossRefGoogle Scholar
  50. 50.
    Lifshitz A, Tamburu C and Suslensky A 1990 J. Phys. Chem. 94 2966CrossRefGoogle Scholar
  51. 51.
    Yampolskii Y P and Rybin V M 1973 React. Kinet. Catal. Lett. 1 321CrossRefGoogle Scholar
  52. 52.
    Curran H J 2006 Int. J. Chem. Kinet. 38 250CrossRefGoogle Scholar
  53. 53.
    Baulch D L, Cobos C J, Cox R A, Esser C, Frank P, Just T, Kerr J A, Pilling M J, Troe J, Walker R W and Warnatz J 1992 J. Phys. Chem. Ref. Data 21 411CrossRefGoogle Scholar
  54. 54.
    Du H and Hessler J P 1992 J. Chem. Phys. 96 1077CrossRefGoogle Scholar
  55. 55.
    Hidaka Y, Nakamura T, Tanaka H, Jinno A and Kawano H 1992 Int. J. Chem. Kinet. 24 761CrossRefGoogle Scholar
  56. 56.
    Skinner G B and Ruehrwein R A 1959 J. Phys. Chem 63 1736CrossRefGoogle Scholar
  57. 57.
    Blackmore D R and Hinshelwood C 1963 Proc. R. Soc. London A 271 34CrossRefGoogle Scholar
  58. 58.
    Knyazev V D, Bencsura A, Stoliarov S I and Slagle I R 1996 J. Phys. Chem. 100 11346CrossRefGoogle Scholar
  59. 59.
    Lim K P and Michael J V 1994 Symp. Int. Combust. Proc. 25 713CrossRefGoogle Scholar
  60. 60.
    Sivaramakrishnan R, Su M C, Michael J V, Klippenstein S J, Harding L B and Ruscic B 2011 J. Phys. Chem. A 115 3366CrossRefGoogle Scholar
  61. 61.
    Tsang W and Hampson R F 1986 J. Phys. Chem. Ref. Data 15 1087CrossRefGoogle Scholar
  62. 62.
    Markus M W, Woiki D and Roth P 1992 Symp. Int. Combust. Proc. 24 581CrossRefGoogle Scholar
  63. 63.
    Sutherland J W, Su M C and Michael J V 2001 Int. J. Chem. Kinet. 33 669CrossRefGoogle Scholar
  64. 64.
    Zhang H X and Back M H 1990 Int. J. Chem. Kinet. 22 21CrossRefGoogle Scholar
  65. 65.
    Tsang W, Cui J P and Walker J A 1990 Proceedings of the 17th International Symposium on Shock Waves & Shock Tubes American Institute of Physics (New York) p. 63Google Scholar
  66. 66.
    Loser U, Scherzer K and Weber K 1989 Z. Phys. Chem. 270 237Google Scholar
  67. 67.
    Curran H J 2006 Int. J. Chem. Kinet. 38 250CrossRefGoogle Scholar
  68. 68.
    Konar R S, Marshall R M and Purnell J H 1968 Trans. Faraday Soc. 64 405CrossRefGoogle Scholar
  69. 69.
    Tsang W 1988 J. Phys. Chem. Ref. Data 17 887CrossRefGoogle Scholar
  70. 70.
    Zheng X B and Blowers P 2006 Ind. Eng. Chem. Res. 45 530CrossRefGoogle Scholar
  71. 71.
    Tsang W 1991 J. Phys. Chem. Ref. Data 20 221CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2016

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations