Skip to main content
Log in

Facile synthesis of Graphene Oxide/Double-stranded DNA composite liquid crystals and Hydrogels

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Investigation of the interactions between graphene oxide (GO) and biomolecules is very crucial for the development of biomedical applications based on GO. This study reports the first observation of the spontaneous formation of self-assembled liquid crystals and three-dimensional hydrogels of graphene oxide with double-stranded DNA by simple mixing in an aqueous buffer media without unwinding double-stranded DNA to single-stranded DNA. The GO/dsDNA hydrogels have shown controlled porosity by changing the concentration of the components. The strong binding between dsDNA and graphene is proved by Raman spectroscopy.

The spontaneous formation of composite liquid crystals (LCs) and porosity-controlled hydrogels of GO with double stranded DNA (dsDNA) in aqueous solution are reported for the first time. The simple self-assembled materials, dsDNA/GO may open new windows in biosesning and tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Krishna K V, Ménard-Moyon C, Verma S and Bianco A 2013 Nanomedicine 8 1669

    Article  CAS  Google Scholar 

  2. Kim J E, Han T H, Lee S H, Kim J Y, Ahn C W, Yun J M and Kim S O, 2011 Angew. Chem. Int. Ed. Engl. 50 3043

  3. Thirupathi R, Reddy Y, Prabhakaran E and Atreya H 2014 J. Chem. Sci. 126 541

    Article  CAS  Google Scholar 

  4. Arya N, Arora A, Vasu K S, Sood A K and Katti D S 2013 Nanoscale 5 2818

    Article  CAS  Google Scholar 

  5. Rao C N R, Sood A K, Subrahmanyam K S and Govindaraj A 2009 Angew. Chem. Int. Ed. 48 7752

    Article  CAS  Google Scholar 

  6. Maity N, Mandal A and Nandi A K 2015 Polymer 65 154

    Article  CAS  Google Scholar 

  7. Ocsoy I, Gulbakan B, Chen T, Zhu G, Chen Z, Sari M M, Peng L, Xiong X, Fang X and Tan W 2013 Adv. Mater. 25 2319

    Article  CAS  Google Scholar 

  8. Kurapati R, Russier J, Squillaci M A, Treossi E, Ménard-Moyon C, Del Rio-Castillo A E, Vazquez E, Samorì P, Palermo V and Bianco A 2015 Small 11 3985

    Article  CAS  Google Scholar 

  9. Xu Y, Wu Q, Sun Y, Bai H and Shi G 2010 ACS Nano 4 7358

    Article  CAS  Google Scholar 

  10. Lv W, Zhang C, Li Z and Yang Q-H 2015 J. Phys. Chem. Lett. 6 658

    Article  CAS  Google Scholar 

  11. Tiwari J N, Nath K, Kumar S, Tiwari R N, Kemp K C, Le N H, Youn D H, Lee J S and Kim K S 2013 Nat. Commun. 4 2221

  12. Gao L, Lian C, Zhou Y, Yan L, Li Q, Zhang C, Chen L and Chen K 2014 Biosens. Bioelectron 60 22

    Article  CAS  Google Scholar 

  13. Liping Sun N H, Peng J, Chen L and Weng J 2014 Adv. Funct. Mater. 24 6905

    Article  Google Scholar 

  14. Lu C -H, Zhu C -L, Li J, Liu J -J, Chen X and Yang H -H 2010 Chem. Commun. 46 3116

    Article  CAS  Google Scholar 

  15. Camci-Unal G, Annabi N, Dokmeci M R, Liao R and Khademhosseini A 2014 NPG Asia Mater. 6 e99

    Article  CAS  Google Scholar 

  16. Paul A, Hasan A, Kindi H A, Gaharwar A K, Rao V T S, Nikkhah M, Shin S R, Krafft D, Dokmeci M R, Shum-Tim D and Khademhosseini A 2014 ACS Nano 8 8050

    Article  CAS  Google Scholar 

  17. Patil A J, Vickery J L, Scott T B and Mann S 2009 Adv. Mater. 21 3159

    Article  CAS  Google Scholar 

  18. Tang L, Wang Y and Li J 2015 Chem. Soc. Rev. 44 6954

    Article  CAS  Google Scholar 

  19. Ren H, Wang C, Zhang J, Zhou X, Xu D, Zheng J, Guo S and Zhang J 2010 ACS Nano 4 7169

    Article  CAS  Google Scholar 

  20. Lei H, Mi L, Zhou X, Chen J, Hu J, Guo S and Zhang Y 2011 Nanoscale 3 3888

    Article  CAS  Google Scholar 

  21. Tang L, Chang H, Liu Y and Li J 2012 Adv. Funct. Mater. 22 3083

    Article  CAS  Google Scholar 

  22. Liu M, Zhao H, Chen S, Yu H and Quan X 2012 Chem. Commun. 48 564

    Article  CAS  Google Scholar 

  23. Wang G, Wang Y, Chen L and Choo J 2010 Biosens. Bioelectron. 25 1859

    Article  CAS  Google Scholar 

  24. Kurapati R and Raichur A M 2013 Chem. Commun. 49 734

    Article  CAS  Google Scholar 

  25. Kurapati R and Raichur A M 2012 Chem. Commun. 48 6013

    Article  CAS  Google Scholar 

  26. Lesot P, Venkateswara Reddy U and Suryaprakash N 2011 Chem. Commun. 47 11736

    Article  CAS  Google Scholar 

  27. Ao G, Nepal D, Aono M and Davis V A 2011 ACS Nano 5 1450

    Article  CAS  Google Scholar 

  28. Erdem A, Papakonstantinou P and Murphy H 2006 Anal. Chem. 78 6656

    Article  CAS  Google Scholar 

  29. Jiang X and Lin X 2004 Electrochem. Commun. 6 873

    Article  CAS  Google Scholar 

  30. Semin K, Youngjae Y, Hanbit K, Eunji L and Jae Young L 2015 Nanotechnology 26 405602

    Article  Google Scholar 

Download references

Acknowledgements

Our sincere thanks to Dr. Ravula Thirupathi (University of Michigan) for his kind help in the schematic diagrams as well as in the discussion part. We also acknowledge Council of Scientific and Industrial Research (CSIR), India for the financial support by providing research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ASHOK M RAICHUR or N SURYAPRAKASH.

Additional information

Supplementary Information (SI)

The synthesis method of graphene oxide, characterization data, and other experimental protocols including supporting figures mentioned in the manuscript are given in the Supplementary Information, available at www.ias.ac.in/chemsci.

These authors have contributed equally to the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

DOCX 24 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KURAPATI, R., REDDY, U.V., RAICHUR, A.M. et al. Facile synthesis of Graphene Oxide/Double-stranded DNA composite liquid crystals and Hydrogels. J Chem Sci 128, 325–330 (2016). https://doi.org/10.1007/s12039-016-1043-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1043-y

Keywords

Navigation