Skip to main content
Log in

Electroless deposition of Gold-Platinum Core@Shell Nanoparticles on Glassy Carbon Electrode for Non-Enzymatic Hydrogen Peroxide sensing#

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A non-enzymatic hydrogen peroxide sensor was developed using gold@platinum nanoparticles (Au@PtNPs) with core@shell structure fabricated on glassy carbon electrode (GCE) by electroless deposition method. Initially, gold nanoparticles (AuNPs) were deposited on GCE by reducing HAuCl4 in the presence of NH2OH and the deposited AuNPs on GCE act as the nucleation centre for the deposition of platinum nanoparticles (PtNPs) in the presence of H2PtCl6 and NH2OH. SEM and AFM studies demonstrated that the electroless deposition of Pt on Au was isotropic and uniform. Further, Au@PtNP-modified substrates were characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray analysis (EDAX) and cyclic voltammetry (CV). XPS showed characteristic binding energies at 71.2 and 74.4 eV for PtNPs and, 83.6 and 87.3 eV for AuNPs indicating the zero-valent nature in both of them. The electrocatalytic activity of Au@PtNP-modified electrode was investigated towards hydrogen peroxide (HP) reduction. The modified electrode exhibited higher electrocatalytic activity towards HP by not only shifting its reduction potential by 370 mV towards less positive potential but also by enhancing the reduction current when compared to bare and AuNP-modified GCE. The present method shows better sensitivity compared to the reported methods in literature and the detection limit was found to be 60 nM.

A non-enzymatic hydrogen peroxide sensor was developed using gold@platinum nanoparticles with core@shell structure fabricated on glassy carbon electrode by electroless deposition method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Scheme 2
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wang Y H, Yang X J, Bai J, Jiang X and Fan G Y 2013 Biosens. Bioelectron. 43 180

    Article  CAS  Google Scholar 

  2. Sato K, Abe E, Takahashi M and Anzai J 2014 J. Colloid Interf. Sci. 432 92

    Article  CAS  Google Scholar 

  3. Liu W N, Ding D, Song Z L, Bian X, Nie X K, Zhang X B, Chen Z and Tan W H 2014 Biosens. Bioelectron. 52 438

    Article  CAS  Google Scholar 

  4. Ahmad M, Pan C, Gan L, Nawaz Z and Zhu J 2010 J. Phys. Chem. C 114 243

    Article  CAS  Google Scholar 

  5. Usui Y, Sato K and Tanaka M 2003 Angew. Chem. Int. Ed. 42 5623

    Article  CAS  Google Scholar 

  6. Halliwell B, Clement M V and Long L H 2000 FEBS Lett. 486 10

    Article  CAS  Google Scholar 

  7. Long L H, Evans P J and Halliwell B 1999 Biochem. Biophys. Res. Commun. 262 605

    Article  CAS  Google Scholar 

  8. Dezwart L L, Meerman J H N, Commandeur J N W and Vermeulen W P E 1999 Free Radic. Biol. Med. 26 202

    Article  CAS  Google Scholar 

  9. Ensafi A A, Atashbar N Z, Ghiaci M, Taghizadeh M and Rezaei B 2015 Mat. Sci. Eng. C 47 290

    Article  CAS  Google Scholar 

  10. Santucci R, Laurenti E, Sinibaldi F and Ferrari R P 2002 Biochim. Biophys. Acta 1596 225

    Article  CAS  Google Scholar 

  11. Klassen N V, Marchington D and Mcgowan H C E 1994 Anal. Chem. 66 2921

    Article  CAS  Google Scholar 

  12. Mori I, Takasaki K, Fujita Y and Matsuo T 1998 Talanta 47 631

    Article  CAS  Google Scholar 

  13. Greenway G M, Leelasattarathkul T, Liawruangrath S, Wheatley R A and Youngvises N 2006 Analyst 131 501

    Article  CAS  Google Scholar 

  14. Pinkernell U, Effkemann S and Karst U 1997 Anal. Chem. 69 3623

    Article  CAS  Google Scholar 

  15. Luque G L, Ferreyra N F, Leyva A G and Rivas G A 2009 Sens. Actuat. B 142 331

    Article  CAS  Google Scholar 

  16. Guascito M R, Filippo E, Malitesta C, Manno D, Serra A and Turco A 2008 Biosens. Bioelectron. 24 1057

    Article  CAS  Google Scholar 

  17. Guascito M R, Chirizzi D, Malitesta C, Mazzotta E, Siciliano M, Siciliano T, Tepore A and Turco A 2011 Biosens. Bioelectron. 26 3562

    Article  CAS  Google Scholar 

  18. Lei C X, Hu S Q, Shen G L and Yu R Q 2003 Talanta 59 981

    Article  CAS  Google Scholar 

  19. Xu Q, Zhao Y, Xu J Z and Zhu J J 2006 Sens. Actuat. B 114 379

    Article  CAS  Google Scholar 

  20. Bai Y, Wang Y D, Zheng W J and Chen Y S 2008 Colloids Surf. B 63 110

    Article  CAS  Google Scholar 

  21. Pumera M, Merkoci A and Alegret S 2006 Sens. Actuat. B 113 617

    Article  CAS  Google Scholar 

  22. Song M J, Hwang S W and Whang D M 2010 Talanta 80 1648

    Article  CAS  Google Scholar 

  23. Palanisamy S, Chen S M and Sarawathi R 2012 Sens. Actuat. B 166–167 372

    Article  Google Scholar 

  24. Wang L, Bo X, Bai J, Zhu L and Guo L 2010 Electroanalysis 22 2536

    Article  CAS  Google Scholar 

  25. Campbell C T 1990 Annu. Rev. Phys. Chem. 41 775

    Article  CAS  Google Scholar 

  26. Rodriguez J A 1996 Surf. Sci. Rep. 24 225

    Article  Google Scholar 

  27. Luo J, Maye M M, Kariuki N N, Wang L Y, Njoki P, Lin Y, Schadt M, Naslund H R and Zhong C J 2005 Catal. Today 99 91

    Article  Google Scholar 

  28. Kang X H, Mai Z B, Zou X Y, Cai P X and Mo J Y 2007 Anal. Biochem. 369 71

    Article  CAS  Google Scholar 

  29. Kristian N, Yan Y and Wan X 2008 Chem. Commun. 353

  30. Bond G C 2007 Platinum Met. Rev. 51 63

    Article  CAS  Google Scholar 

  31. Harada M, Asakura K and Toshima N 1993 J. Phys. Chem. 97 5103

    Article  CAS  Google Scholar 

  32. Heng H Y, Gibbons P C, Kelton K F and Buhro W E 1997 J. Am. Chem. Soc. 119 10382

    Article  Google Scholar 

  33. Baletto F, Mottet C and Ferrando R 2003 Phys. Rev. Lett. 90 135504

    Article  CAS  Google Scholar 

  34. Crooks R and Zhao M 1999 Adv. Mat. 11 217

    Article  Google Scholar 

  35. Jena B K and Raj C R 2007 Langmuir 23 4064

    Article  CAS  Google Scholar 

  36. Jena B K and Raj C R 2008 Chem. Mater. 20 3546

    Article  CAS  Google Scholar 

  37. Ye H and Crooks R M 2005 J. Am. Chem. Soc. 127 4930

    Article  CAS  Google Scholar 

  38. Kumar S and Zou S 2005 J. Phys. Chem. B 109 15707

    Article  CAS  Google Scholar 

  39. Lou Y, Maye M M, Han L, Luo J and Zhong C. 2001 Chem. Commun. 473

  40. Zhou Y, Yu G, Chang F, Hu B and Zhong C J 2012 Anal. Chim. Acta 757 56

    Article  CAS  Google Scholar 

  41. Wang J, Gao H, Sun F and Xu C 2014 Sens. Actuat. B 191 612

    Article  CAS  Google Scholar 

  42. Gowthaman N S K and John S A 2015 RSC Adv. 5 42369

    Article  CAS  Google Scholar 

  43. Cao L, Tong L, Diao P, Zhu T and Liu Z 2004 Chem. Mater. 16 3239

    Article  CAS  Google Scholar 

  44. Liz-Marzan L M and Philipse A P 1995 J. Phys. Chem. 99 15120

    Article  CAS  Google Scholar 

  45. Matsumoto T, Komatsu T, Arai K, Yamazaki T, Kijima M, Shimizu H, Takasawab Y and Nakamura J 2004 Chem. Commun. 840

  46. Kannan P and John S A 2010 Electrochim. Acta 55 3497

    Article  CAS  Google Scholar 

  47. Li Y, Lu Q, Wua S, Wanga L and Shi X 2013 Biosens. Bioelectron. 41 576

    Article  CAS  Google Scholar 

  48. Li Y, Ma J and Ma Z 2013 Electrochim. Acta 108 435

    Article  CAS  Google Scholar 

  49. Kang Q, Yang L X and Cai Q Y 2008 Bioelectrochemistry 74 62

    Article  CAS  Google Scholar 

  50. Xu C, Sun F, Gao H and Wang J 2013 Anal. Chim. Acta 780 20

    Article  CAS  Google Scholar 

  51. Heli H, Sattarahmady N, Vais R D and Mehdizadeh A R 2014 Sens. Actuat. B 192 310

    Article  CAS  Google Scholar 

Download references

Acknowledgements

NSKG thanks the University Grants Commission (UGC), New Delhi, for the award of a Meritorious Student Fellowship (F. 7-225/2009(BSR) dt. 15.01.2013). Financial support from Department of Biotechnology (BT/PR10372/PFN/20/904/2013), New Delhi, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S ABRAHAM JOHN.

Additional information

Dedicated to Professor R. Ramaraj on the occasion of his 60th anniversary

Supplementary Information (SI)

UV-Vis absorption spectra and EDAX spectrum obtained for ITO/Au@PtNPs, CVs obtained for GCE/AuNPs at different deposition times, HP reduction at GCE/Au@PtNPs at different deposition times, effect of scan rate and concentration on HP reduction at GC/Au@PtNP electrode and amperometric determination of HP oxidation are given in the supporting information. Supplementary Information is available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 599 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GOWTHAMAN, N.S.K., JOHN, S.A. Electroless deposition of Gold-Platinum Core@Shell Nanoparticles on Glassy Carbon Electrode for Non-Enzymatic Hydrogen Peroxide sensing# . J Chem Sci 128, 331–338 (2016). https://doi.org/10.1007/s12039-016-1038-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1038-8

Keywords

Navigation