Skip to main content

Advertisement

Log in

Facile growth of Ag@Pt bimetallic nanorods on electrochemically reduced graphene oxide for an enhanced electrooxidation of hydrazine

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

An efficient transducer was constructed by the direct growth of bimetallic Ag@Pt nanorods (NRDs) on L−tryptophan functionalized electrochemically reduced graphene oxide (L−ERGO) modified electrode using galvanic displacement method for the electrooxidation of hydrazine. Initially, one dimensional bimetallic Ag@Cu core−shell NRDs were grown on L−ERGO modified electrode by simple seed mediated growth method. Then, the Cu shells at bimetallic NRDs were exchanged by Pt through galvanic displacement method. Accordingly, the synergetic effect produced by the combination of Ag and Pt as NRDs at L−ERGO surface enabled an enhancement in the electrocatalytic efficiency for hydrazine oxidation. L−ERGO supported bimetallic Ag@Pt NRDs were characterised by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and cyclic voltammetric techniques. Finally, the modified electrode was successfully used for the electrooxidation of hydrazine in PB (pH 7.4) with a detection limit of 6 × 10−7 M (S/N =3). Importantly, the presence of Pt on Ag surface plays a vital role in the electrooxidation of N2H4 at −0.2 V with an onset potential at −0.5 V where its overpotential has decreased. On the other hand, L−ERGO nanosheets tend to facilitate an effective immobilization of low density Ag seeds (Agseeds) on its surface. Chronoamperometric studies were used to study the linear correlation of [N2H4] between 1 mM and 10 mM. The modified electrode shows a high sensitivity and selectivity for a trace amount of N2H4 in the presence of different interfering cations and anions.

Sequential growth of Ag@Pt nanorods (NRDs) on electrochemically reduced graphene oxide (L−ERGO) by seed mediated growth and sacrificial replacement of Cu by Pt surface. Synergistic effect was produced by the combination of Ag and Pt as NRDs at L−ERGO which enables an enhancement in the electrocatalytic efficiency for hydrazine oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Golabi S M and Zare H R 1999 J. Electroanal. Chem. 465 168

    Article  CAS  Google Scholar 

  2. Garrod S, Bollard M E, Nicholls A W, Connor S C, Connelly J, Nicholson J K and Holmes E 2005 Chem. Res. Toxicol. 18 115

    Article  CAS  Google Scholar 

  3. Ahmad U, Rahman M M and Hahn Y B 2009 Talanta 77 1376

    Article  Google Scholar 

  4. Umar A, Rahman M M, Kim S H and Hahn Y B 2008 Chem. Commun. 2 166

    Article  Google Scholar 

  5. Amlathe S and Gupta V K 1988 Analyst 113 1481

    Article  CAS  Google Scholar 

  6. Kim S K, Jeong Y N, Ahmed M S, You J M, Choi H C and Jeon S 2011 Sens. Actuators, B 153 246

    Article  CAS  Google Scholar 

  7. Safavi A, Abbasitabar F and Nezhad M R H 2007 Chem. Anal. 52 835

    CAS  Google Scholar 

  8. Mori M, Tanaka K, Xu Q, Ikedo M, Taoda H and Hu W 2004 J. Chromatogr. A 11 1039

    Google Scholar 

  9. Collins G E, Latturner S and Rose-Pehrsson S L 1995 Talanta 42 543

    Article  CAS  Google Scholar 

  10. Budkuley J S 1992 Microchim. Acta 108 103

    Article  CAS  Google Scholar 

  11. Li J, Xie H and Chen L 2011 Sens. Actuators, B 153 239

    Article  CAS  Google Scholar 

  12. Zhang C, Wang G, Ji Y, Liu M, Feng Y, Zhang Z and Fang B 2010 Sens. Actuators, B 150 247

    Article  CAS  Google Scholar 

  13. Wang Y, Yang X, Bai J, Jiang X and Fan G 2013 Biosens. Bioelectron. 43 180

    Article  CAS  Google Scholar 

  14. Li J and Lin X 2007 Sens. Actuators, B 126 527

    Article  CAS  Google Scholar 

  15. Pumera M 2010 Chem. Soc. Rev. 39 4146

    Article  CAS  Google Scholar 

  16. Wang X 2005 Electroanalysis 17 7

    Article  CAS  Google Scholar 

  17. Chakraborty S and Retna Raj C 2010 Sens. Actuators, B 147 222

    Article  CAS  Google Scholar 

  18. Xu F, Zhao L, Zhao F, Deng L, Hu L and Zeng B. 2014 Int. J. Electrochem. Sci. 9 2832

    Google Scholar 

  19. Yang G W, Gao G Y, Wang C, Xu C L and Li H L 2008 Carbon 46 747

    Article  CAS  Google Scholar 

  20. Kamat P V 2010 J. Phys. Chem. Lett. 1 520

    Article  CAS  Google Scholar 

  21. Wang C, Zhang L, Guo Z, Xu J, Wang H, Zhai K and Zhuo X 2010 Microchim. Acta 169 1

    Article  CAS  Google Scholar 

  22. Lee M S, Lee K, Kim S Y, Lee H, Park J, Choi K H, Kim H K, Kim D G, Lee D Y, Nam X Y and Park J U 2013 Nano Lett. 13 2814

    Article  CAS  Google Scholar 

  23. Luo Z, Yuwen L, Bao B, Tian J, Zhu X, Weng L and Wang L 2012 J. Mater. Chem. 22 7791

    Article  CAS  Google Scholar 

  24. Jeena S E, Gnanaprakasam P, Dakshinamurthy A and Selvaraju T 2015 RSC Adv. 5 48236

    Article  CAS  Google Scholar 

  25. Gnanaprakasam P and Selvaraju T 2014 RSC Adv. 4 24518

    Article  CAS  Google Scholar 

  26. Cheemalapati S, Palanisamy S and Chen S M 2013 Int. J. Electrochem. Sci. 8 3953

    CAS  Google Scholar 

  27. Easow J S and Selvaraju T 2013 Electrochim. Acta 112 648

    Article  CAS  Google Scholar 

  28. Fragkou V, Ge Y, Steiner G, Freeman D, Bartetzko N and Turner A P F 2012 Int. J. Electrochem. Sci. 7 6214

    CAS  Google Scholar 

  29. Hubbard A T 1969 J. Electroanal. Chem. 22 165

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by DST-SERB, New Delhi (File No. SR/FT/CS-44/2011 dated 04.05.2012) is gratefully acknowledged. We thank Karunya University, Coimbatore for providing instrumental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T SELVARAJU.

Additional information

Dedicated to Professor R. Ramaraj on the occasion of his 60th birth anniversary.

Supplementary Information (SI)

Supplementary Information associated with this article is available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 348 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

JEENA, S.E., SELVARAJU, T. Facile growth of Ag@Pt bimetallic nanorods on electrochemically reduced graphene oxide for an enhanced electrooxidation of hydrazine. J Chem Sci 128, 357–363 (2016). https://doi.org/10.1007/s12039-015-1024-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-1024-6

Keywords

Navigation