Skip to main content
Log in

Impact of electric field on Hofmeister effects in aggregation of negatively charged colloidal minerals

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In this study, the aggregation kinetics of negatively charged colloidal minerals in Na++, K++, NH\(_{\mathrm {4}}^{\mathrm {+}}\), Mg2+, Ca2+ and Cu2+ solutions were measured and Hofmeister effects therein were estimated through total average aggregation (TAA) rates and critical coagulation concentration (CCC). Hofmeister effects of TAA rates increased exponentially with the increase in electric field strength, which cannot be explained by the classical theories (i.e., ionic size, hydration and dispersion forces), indicating strong electric field at colloidal surface was an indispensable factor in studying Hofmeister effects. Meanwhile, Hofmeister series of CCC values Na+> K+> NH\(_{\mathrm {4}}^{\mathrm {+}}>\) Mg2+> Ca2+> Cu2+ show fine correlation with the polarization of various cations, implying that onic polarization in strong electric field would be responsible for Hofmeister effects in aggregation of colloidal minerals, and the deduction was confirmed by the calculated results of electrostatic interactions between colloidal minerals.

Aggregation kinetics of negatively charged colloids in nitrate solutions with various cation species were studied. The pronounced Hofmeister effects observed in strong electric field and the corresponding calculated results for interaction forces indicated that ionic polarization in strong electric field would be responsible for Hofmeister effects in aggregation of colloidal minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Tian R, Yang G, Zhu C, Liu X M and Li H 2015 J. Phys. Chem. C 119 4856

    Article  CAS  Google Scholar 

  2. Tian R, Yang G, Liu X M, Huang C, Gao X D and Li H 2015 J. Chem. Sci. 127 1083

    Article  CAS  Google Scholar 

  3. López-León T, Santander-Ortega M J, Ortega-Vinuesa J L and Bastos-González D 2008 J. Phys. Chem. C 112 16060

    Article  Google Scholar 

  4. Kunz W 2010 In Specific Ion Effects (Singapore: World Scientific)

  5. Lo Nostro P, Ninham B W, Lo Nostro A, Pesavento G, Fratoni L and Baglioni P 2005 Phys. Biol. 2 1

    Article  CAS  Google Scholar 

  6. Lo Nostro P, Ninham B W, Milani S, Lo Nostro A, Pesavento G and Baglioni P 2006 Biophys. Chem. 124 208

    Article  CAS  Google Scholar 

  7. Zhang Y, Furyk S, Bergbreiter D E and Cremer P 2005 J. Am. Chem. Soc. 127 14505

    Article  CAS  Google Scholar 

  8. Salis A, Bilanicova D, Ninham B W and Monduzzi M 2007 J. Phys. Chem. B 111 1149

    Article  CAS  Google Scholar 

  9. Bilaničová D, Salis A, Ninham B W and Monduzzi M 2008 J. Phys. Chem. B 112 12066

    Article  Google Scholar 

  10. Nostro P L, Nostro A L, Ninham B W, Pesavento G, Fratoni L and Baglioni P 2004 Curr. Opin. Colloid Interf. Sci. 9 97

    Article  Google Scholar 

  11. Liu X M, Li H, Du W, Tian R, Li R and Jiang X J 2013 J. Phys. Chem. C 117 6245

    Article  CAS  Google Scholar 

  12. Ruiz-Agudo E, Urosevic M, Putnis C V, Rodríguez-Navarro C, Cardell C and Putnis A 2011 Chem. Geol. 281 364

    Article  CAS  Google Scholar 

  13. Conway B and Ayranci E 1999 J. Solution Chem. 28 163

    Article  CAS  Google Scholar 

  14. Das M R, Borah J M, Kunz W, Ninham B W and Mahiuddin S 2010 J. Colloid Interf. Sci. 344 482

    Article  CAS  Google Scholar 

  15. Kunz W, Belloni L, Bernard O and Ninham B W 2004 J. Phys. Chem. B 108 2398

    Article  CAS  Google Scholar 

  16. Parsons D F and Ninham B W 2010 Langmuir 26 6430

    Article  CAS  Google Scholar 

  17. Hosoda H, Mori H, Sogoshi N, Nagasawa A and Nakabayashi S 2004 J.Phys. Chem. A 108 1461

    Article  CAS  Google Scholar 

  18. Zavitsas A A 2001 J. Phys. Chem. B 105 7805

    Article  CAS  Google Scholar 

  19. Nag A, Chung D S, Dolzhnikov D S, Dimitrijevic N M, Chattopadhyay S, Shibata T and Talapin D V 2012 J. Am. Chem. Soc. 134 13604

    Article  CAS  Google Scholar 

  20. Kadlag K P, Rao M J and Nag A 2013 J. Phys. Chem. Lett. 4 1676

    Article  CAS  Google Scholar 

  21. Manciu M and Ruckenstein E 2003 Adv. Colloid Interface Sci. 105 63

    Article  CAS  Google Scholar 

  22. Kathmann S M, Schenter G K and Garrett B C 2005 Phys. Rev. Lett. 94 116104

    Article  Google Scholar 

  23. Martín-Molina A, Ibarra-Armenta J G and Quesada-Pérez M 2009 J. Phys. Chem. B 113 2414

    Article  Google Scholar 

  24. Deniz V, Boström M, Bratko D, Tavares F and Ninham B 2008 Colloids Surf. A 319 98

    Article  CAS  Google Scholar 

  25. Bostrom M, Craig V, Albion R, Williams D and Ninham B 2003 J. Phys. Chem. B 107 2875

    Article  Google Scholar 

  26. Bostrom M, Williams D and Ninham B 2002 J. Phys Chem. B 106 7908

    Article  Google Scholar 

  27. Parsons D F, Boström M, Nostro P L and Ninham B W 2011 Phys. Chem. Chem. Phys. 13 12352

    Article  CAS  Google Scholar 

  28. Calero C, Faraudo J and Bastos-González D 2011 J. Am. Chem. Soc. 133 15025

    Article  CAS  Google Scholar 

  29. Borah J M, Mahiuddin S, Sarma N, Parsons D F and Ninham B W 2011 Langmuir 27 8710

    Article  CAS  Google Scholar 

  30. Bostrom M, Lima E, Tavares F and Ninham B 2008 J. Chem. Phys. 128 135104

    Article  CAS  Google Scholar 

  31. Kim H K, Tuite E, Nordén B and Ninham B W 2001 Euro. Phys. J. E 4 411

    Article  CAS  Google Scholar 

  32. Ao Z, Liu G and Zhang G 2011 J. Phys. Chem. C 115 2284

    Article  CAS  Google Scholar 

  33. Tian R, Yang G, Li H, Gao X, Liu X M, Zhu H L and Tang Y 2014 Phys. Chem. Chem. Phys. 16 8828

    Article  CAS  Google Scholar 

  34. Liu X M, Li H, Li R, Xie D T, Ni J P and Wu L 2014 Sci. Rep. 4

  35. Tian R, Yang G, Tang Y, Liu X M, Li R, Zhu H and Li H 2015 PLoS One 10 1

    Google Scholar 

  36. Schwierz N, Horinek D and Netz R R 2010 Langmuir 26 7370

    Article  CAS  Google Scholar 

  37. Dishon M, Zohar O and Sivan U 2009 Langmuir 25 2831

    Article  CAS  Google Scholar 

  38. Schwierz N, Horinek D and Netz R R 2013 Langmuir 29 2602

    Article  CAS  Google Scholar 

  39. Li H, Hou J, Liu X M, Li R, Zhu H and Wu L 2011 Soil Sci. Soc. Am. J. 75 2128

    Article  CAS  Google Scholar 

  40. Kinraide T B and Wang P 2010 J. Exp. Bot. 61 2507

    Article  CAS  Google Scholar 

  41. Boroudjerdi H, Kim Y W, Naji A, Netz R, Schlagberger X and Serr A 2005 Phys.Rep. 416 129

    Article  CAS  Google Scholar 

  42. Liu X M, Li H, Li R, Tian R and Xu C Y 2013 Analyst 138 1122

    Article  CAS  Google Scholar 

  43. Xiong Y, Chen J and Zhang J 1985 In Soil Colloid (2): Methods for soil colloid research (In Chinese). (Beijing: Science Press) p.10

  44. Staunton S and Quiquampoix H 1994 J. Colloid Interf. Sci. 166 89

    Article  CAS  Google Scholar 

  45. Liu X M, Li H, Li R and Tian R 2013 Surf. Sci. 607 197

  46. Li S, Li H, Xu C Y, Huang X R, Xie D T and Ni J P 2013 Soil Sci. Soc. Am. J. 77 1563

    Article  CAS  Google Scholar 

  47. Li H, Peng X H, Wu L S, Jia M Y and Zhu H L 2009 J. Phys. Chem. C 113 44

    Article  Google Scholar 

  48. Hou J, Li H, Zhu H L and Wu L S 2009 Soil Sci. Soc. Am. J. 73 1658

    Article  CAS  Google Scholar 

  49. Ducker W A, Senden T J and Pashley R M 1992 Langmuir 8 1831

    Article  CAS  Google Scholar 

  50. Jia M Y, Zhu H L, Tian R and Gao X D 2013 J. Soils Sediments 13 325

    Article  CAS  Google Scholar 

  51. Kunz W, Henle J and Ninham B W 2004 Curr. Opin. Colloid Interface Sci. 9 19

    Article  CAS  Google Scholar 

  52. Kosmulski M 2002 Langmuir 18 785

    Article  CAS  Google Scholar 

  53. Rosen E L, Buonsanti R, Llordes A, Sawvel A M, Milliron D J and Helms B A 2012 Angew. Chem. Int. Ed. 51 684

    Article  CAS  Google Scholar 

  54. Stellwagen E and Stellwagen N C 2003 Biophys. J. 84 1855

    Article  CAS  Google Scholar 

  55. Vrbka L, Mucha M, Minofar B, Jungwirth P, Brown E C and Tobias D J 2004 Curr. Opin. Colloid Interface Sci. 9 67

    Article  CAS  Google Scholar 

  56. Conway B E 1981 In Ionic Hydration in Chemistry and Biophysics (New York: Elsevier)

  57. Parsons D F and Ninham B W 2009 Langmuir 26 1816

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 40971146 and 41501241), the Chongqing Research Program of Basic Research and Frontier Technology (No. cstc2014jcyjA00034 and cstc2015jcyjA00036) and China Postdoctoral Science Foundation (Grant No. 2015M572430).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to HANG LI or HUALING ZHU.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

TANG, Y., LI, H., ZHU, H. et al. Impact of electric field on Hofmeister effects in aggregation of negatively charged colloidal minerals. J Chem Sci 128, 141–151 (2016). https://doi.org/10.1007/s12039-015-1008-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-1008-6

Keywords

Navigation