Skip to main content
Log in

Design and synthesis of nanoporous perylene bis-imide linked metalloporphyrin frameworks and their catalytic activity

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Two nanoporous perylene bis-imide linked metalloporphyrin framework catalysts have been synthesized via condensation of 5,10,15,20-tetrakis-(4\(^{\prime }\)-aminophenyl) iron(III) porphyrin chloride or 5,10, 15,20-tetrakis-(4\(^{\prime }\)-aminophenyl) manganese(III) porphyrin chloride with perylene-3,4,9,10-tetracarboxylic dianhydride. Both the materials were crystalline in nature and were characterized by electron microscopy techniques, solid-state 1H- 13C CP/MS NMR, powder X-ray diffraction (PXRD), and magnetic susceptibility measurements. The nitrogen gas physisorption study has indicated that both materials are porous in nature and have BET surface area with 653 m2/g and 974 m2/g with uniform pore size of 2.8 nm. These materials were found to act as very good heterogeneous catalysts for selective oxidation of alkanes and alkenes with tert-butyl hydroperoxide and were not degraded even after multiple uses up to 10 cycles.

Two nanoporous perylene bis-imide linked metalloporphyrin framework catalysts have been synthesized. They show interesting peroxidase activity for the selective oxidation of alkanes and alkenes even after ten cycles with negligible catalyst degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Scheme 2
Figure 5

Similar content being viewed by others

References

  1. Dolphin D and Traylor T G 1997 Acc. Chem. Res. 30 251

    Article  CAS  Google Scholar 

  2. Suslick K S, Bhyrappa P, Chou J H, Kosal M E, Nakagaki S, Smithenry D W and Wilson S R 2005 Acc. Chem. Res. 38 283

    Article  CAS  Google Scholar 

  3. Che C M and Huang J S 2009 Chem. Commun. 3996

  4. Liu W and Groves J T 2010 J. Am. Chem. Soc. 132 12847

    Article  CAS  Google Scholar 

  5. Zhao M, Ou S and Wu C D 2014 Acc. Chem. Res. 47 1199

    Article  CAS  Google Scholar 

  6. Chin D H, Mar G N L and Balch A L 1980 J. Am. Chem. Soc. 102 4344

    Article  CAS  Google Scholar 

  7. Traylor T G and Tsuchiya S 1987 Inorg. Chem. 26 1339

    Article  Google Scholar 

  8. Kamaraj K and Bandyopadhyay D 1997 J. Am. Chem. Soc. 119 8099

    Article  CAS  Google Scholar 

  9. Wadhwani P, Mukherjee M and Bandyopadhyay D 2001 J. Am. Chem. Soc. 123 12430

    Article  CAS  Google Scholar 

  10. Agarwala A and Bandyopadhyay D 2006 Chem. Commun. 4823

  11. Moreira M S M, Martins P R and Curi R B 2005 Nascimento O R and Iamamoto Y J. Mol. Catal. A: Chem. 233 73

    Article  CAS  Google Scholar 

  12. Costa A A, Ghesti G F, Macedo J L D, Braga V S, Santos M M, Dias J A and Dias S C L 2008 J. Mol. Catal. A: Chem. 282 149

    Article  CAS  Google Scholar 

  13. Fateeva A, Vinot S D, Heymans N, Devic T, Greneche J M, Wuttke S, Miller S, Lago A, Serre C, Weireld G D, Maurin G, Vimont A and Ferey G 2011 Chem. Mater. 23 4641

    Article  CAS  Google Scholar 

  14. Xie M H, Yang X L, Zou C and Wu C D 2011 Inorg. Chem. 50 5318

    Article  CAS  Google Scholar 

  15. Chen L, Yang Y, Guo Z and Jiang D 2011 Adv. Mater. 23 3149

    Article  CAS  Google Scholar 

  16. Shultz A M, Farha O K, Hupp J T and Nguyen S B T 2011 Chem. Sci. 2 686

    Article  CAS  Google Scholar 

  17. Feng X, Ding X and Jiang D 2012 Chem. Soc. Rev. 41 6010

    Article  CAS  Google Scholar 

  18. Chen L, Yang Y and Jiang D 2010 J. Am. Chem. Soc. 132 9138

    Article  CAS  Google Scholar 

  19. Kandambeth S, Mallick A, Lukose B, Mane M V, Heine T and Banerjee R 2012 J. Am. Chem. Soc. 134 19524

    Article  CAS  Google Scholar 

  20. Cote A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J and Yaghi O M 2005 Science 310 1166

    Article  CAS  Google Scholar 

  21. Feng X, Chen L, Dong Y and Jiang D 2011 Chem. Commun. 47 1779

    Article  Google Scholar 

  22. Xu H, Chen X, Gao J, Lin J, Addicoat M, Irle S and Jiang D 2014 Chem. Commun. 50 1292

    Article  CAS  Google Scholar 

  23. Zhang W, Jiang P, Wang Y, Zhang J and Zhang P 2015 Catal. Sci. Technol. 5 101

    Article  CAS  Google Scholar 

  24. Ma H, Ren H, Meng S, Sun F and Zhu G 2013 Sci. Rep. 3 1

    Google Scholar 

  25. Meng S, Ma H, Jiang L, Ren H and Zhu G 2014 J. Mater. Chem. A 2 14536

    Article  CAS  Google Scholar 

  26. Canivet J, Fateeva A, Guo Y, Coasnecd B and Farrusseng D 2014 Chem. Soc. Rev. 43 5594

    Article  CAS  Google Scholar 

  27. Zhang Z, Yao Z, Xiang S and Chen B 2014 Energy Environ. Sci. 7 2868

    Article  CAS  Google Scholar 

  28. Modak A, Pramanik M, Inagakibc S and Bhaumik A 2014 J. Mater. Chem. A 2 11642

    Article  CAS  Google Scholar 

  29. Kreno L E, Hupp J T and Duyne R P V 2010 Anal. Chem. 82 8042

    Article  CAS  Google Scholar 

  30. Wang C, Liu D and Lin W 2013 J. Am. Chem. Soc. 135 13222

    Article  CAS  Google Scholar 

  31. Liu J, Chen L, Cui H, Zhang J, Zhang L and Su C 2014 Chem. Soc. Rev. 43 6011

    Article  CAS  Google Scholar 

  32. Yang X, Xie M, Zou C, He Y, Chen B, O’Keeffe M and Wu C 2012 J. Am. Chem. Soc. 134 10638

    Article  CAS  Google Scholar 

  33. Xu H, Chen X, Gao J, Lin J, Addicoat M, Irle S and Jiang D 2014 Chem. Commun. 50 1292

    Article  CAS  Google Scholar 

  34. Chen Y, Hoang T and Ma S 2012 Inorg. Chem. 51 12600

    Article  CAS  Google Scholar 

  35. Nakagaki S, Ferreira G K B, Ucoski G M and Castro K A D F 2013 Molecules 18 7279

    Article  CAS  Google Scholar 

  36. Larsen L W, Wojtas L, Perman J, Musselman R L, Zaworotko M J and Vetromile C M 2011 J. Am. Chem. Soc. 133 10356

    Article  CAS  Google Scholar 

  37. Ding S and Wang W 2013 Chem. Soc. Rev. 42 548

    Article  CAS  Google Scholar 

  38. Singh M K and Bandyopadhyay D 2014 J. Chem. Sci. 126 1707

    Article  CAS  Google Scholar 

  39. Li C, Qui W, Long W, Deng F, Bai G, Zhang G, Zi X and He H 2014 J. Mol. Catal. A: Chem. 393 166

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Department of Science and Technology (DST, India) (Project no. SR/S1/IC-48/2010) for funding and UGC for the fellowship to MKS. We also thank Prof. R. Chatterjee of the Dept. of Physics, IIT Delhi for SQUID measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DEBKUMAR BANDYOPADHYAY.

Additional information

Supplementary Information

Synthetic methods and characterization of monomeric free base porphyrins and metalloporphyrins, measurements of FT-IR, EDX, magnetic susceptibility PXRD, pore size and distribution by NL-DFT, Recyclability table for the polymeric materials are available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 1.91 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SINGH, M.K., BANDYOPADHYAY, D. Design and synthesis of nanoporous perylene bis-imide linked metalloporphyrin frameworks and their catalytic activity. J Chem Sci 128, 1–8 (2016). https://doi.org/10.1007/s12039-015-0994-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-0994-8

Keywords

Navigation