Skip to main content
Log in

Synthesis and crystal structure determination of YCo1−x Fe x O3 (x = 0, 0.33, 0.5, 0.67 and 1) perovskites

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The results on synthesis, crystal structure determination and calculation of crystallochemical parameters of YCo1−x Fe x O3 (x = 0, 0.33, 0.5, 0.67 and 1) perovskites are presented in this work. The compounds within this series were synthesized by solution combustion method using two different fuels: urea and citric acid. It was found that iron-containing perovskites, obtained by citric acid as a fuel are of better quality and crystallinity. All the compounds crystallize in Pnma space group with Z= 4. According to the structure and the calculated crystallochemical parameters, the coordination number of Y3+ in these perovskites is 8. The unit cell parameter relationship is of O−type suggesting that the main reason for distortion of ideal perovskite structure is the octahedral tilting. The deformation of the octahedrons, as well as the tilting angles, are increasing with the increasing content of Fe3+ but the calculated global instability indices (GII) show that the stability of the perovskite structure is increasing with increasing of the Fe3+ content.

The perovskites YCo1−x Fe x O3 (0 ≤ x ≤ 1) obtained by solution combustion method are isomorphous and crystallize in Pnma space group. The main reason for deviation from the ideal perovskite structure is tilting of the octahedra. The substitution of Co3+ with Fe3+ leads to a more distorted and tilted octahedron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Galasso F S 1990 In Perovskites and High Tc Superconductors (New York: Gordon and Breach) p. 171

  2. Peña M A and Fierro J L G 2001 Chem. Rev. 101 1981

    Article  Google Scholar 

  3. Ishihara T (Ed.) 2009 Perovskite Oxide for Solid Oxide Fuel Cells (Dordrecht: Springer)

  4. Mitchell R H 2002 In Perovskites: Modern and Ancient (Thunder Bay: Almaz) p. 9

  5. Knížek K, Jirák Z, Hejtmánek J, Veverka M, Maryško M, Maris G and Palstra T T M 2005 Eur. Phys. J. B 47 213

    Article  Google Scholar 

  6. Yan J -Q, Zhou J -S and Goodenough J B 2004 Phys. Rev. B 69 134409

    Article  Google Scholar 

  7. Cavalcante F H M, Carbonari A W, Malavasi R F L, Cabrera-Pasca G A, Saxena R N and Mestnik-Filho J 2008 J. Magn. Magn. Mater. 320 e32

    Article  CAS  Google Scholar 

  8. Zhou J -S, Yan J -Q and Goodenough J B 2005 Phys. Rev. B 71 220103R

    Article  Google Scholar 

  9. Goodenough J B (Ed.) 2001 In Localized to Itinerant Electronic Transition in Perovskite Oxides (Berlin: Springer-Verlag) p. 38

  10. Dimitrovska-Lazova S, Kovacheva D, Aleksovska S, Marinšek M and Tzvetkov P 2012 Bulg. Chem. Comm. 44 235

    Google Scholar 

  11. Kovachev S, Kovacheva D, Aleksovska S, Svab E and Krezhov K 2009 J. Optoelectron. Adv. Mater. 11 1549

    CAS  Google Scholar 

  12. Dimitrovska-Lazova S, Kovacheva D and Tzvetkov P 2012 Bulg. Chem. Comm. 44 245

    Google Scholar 

  13. Gil D M, Navarro M C, Lagarrigue M C, Guimpel J, Carbonio R E and Gómez M I 2011 J. Therm. Anal. Calorim. 103 889

    Article  CAS  Google Scholar 

  14. Liu Y, Qin X Y, Wang Y F, Xin H X, Zhang J and Li H J 2007 J. Appl. Phys. 101 083709

    Article  Google Scholar 

  15. Liu Y, Li H, Li Y and Sun W 2013 Ceram. Int. 39 8189

    Article  CAS  Google Scholar 

  16. Yin X, Hong L and Liu Z -L 2006 Appl. Catal. A: General 300 75

    Article  CAS  Google Scholar 

  17. Lal B, Raghunandan M K, Gupta M and Singh R N 2005 Int. J. Hydrogen Energy 30 723

    Article  CAS  Google Scholar 

  18. Salker A V, Choi N -J, Kwak J -H, Joo B -S and Lee D -D 2005 Sens. Actuators, B 106 461

    Article  CAS  Google Scholar 

  19. Rossignol C, Ralph J M, Bae J-M and Vaughey J T 2004 Solid State Ionics 175

  20. Thornton G, Morrison F C, Partingtont S, Tofield B C and Williams D E 1988 J. Phys. C: Solid State Phys. 21 2871

    Article  CAS  Google Scholar 

  21. Demazeau G, Pouchard M and Hagenmuller P 1974 J. Solid State Chem. 9 202

    Article  CAS  Google Scholar 

  22. Knížek K, Jirák Z, Hejtmánek J, Veverka M, Maryško M, Hauback B C and Fjellvåg H 2006 Phys. Rev. B 73 214443

    Article  Google Scholar 

  23. Balamurugan S and Takayama-Muromachi E 2006 J. Solid State Chem. 179 2231

    Article  CAS  Google Scholar 

  24. Mehta A, Berliner R and Smith R W 1997 J. Solid State Chem. 130 192

    Article  CAS  Google Scholar 

  25. Buassi-Monroy O S, Luhrs C C, Chávez-Chávez A and Michel C R 2004 Mater. Lett. 58 716

    Article  CAS  Google Scholar 

  26. Mathur S, Veith M, Rapalaviciute R, Shen H, Goya G F, Martins Filho W L and Berquo T S 2004 Chem. Mater. 16 1906

    Article  CAS  Google Scholar 

  27. Cao X 2001 J. Am. Ceram. Soc. 84 1265

    Article  CAS  Google Scholar 

  28. Gatelytė A, Jasaitis D, Beganskienė A and Kareiva A 2011 Mater. Sci. 17 302

    Google Scholar 

  29. Maiti R, Basu S and Chakravorty D 2009 J. Mag. Mag. Mater. 321 3274

    Article  CAS  Google Scholar 

  30. Wu L, Yu J C, Zhang L, Wang X and Li S 2004 J. Solid State Chem. 177 3666

    Article  CAS  Google Scholar 

  31. Hui S, Jiayue X and Anhua W 2010 J. Rare Earths 28 416

    Article  Google Scholar 

  32. Tien N A, Almjasheva O V, Mittova I Y., Stognei O V and Soldatenko S A 2009 Inorg. Mater. 45 1304

    Article  Google Scholar 

  33. Liu J, Xie J M, Zhang H, Gu Z J and Meng X 2007 Mater. Sci. Forum 561–565 1085

    Article  Google Scholar 

  34. Du Boulay D, Maslen E N, Streltsov V M and Ishizawa N 1995 Acta Crystallogr. B51 921

    Article  CAS  Google Scholar 

  35. Coppens P and Eibschütz M 1965 Acta Crystallogr. 19 524

    Article  CAS  Google Scholar 

  36. Deganello F, Marcì G and Deganello G 2009 J. Eur. Ceram. Soc. 29 439

    Article  CAS  Google Scholar 

  37. Rodriguez-Carvajal J 1993 Physica B 192 55

    Article  CAS  Google Scholar 

  38. Silva A M, Kong X, Parkin M C, Cammack R and Hider R C 2009 Dalton Trans. 40 8616

    Article  Google Scholar 

  39. Glazer A M 1972 Acta Crystallogr. B28 3384

    Article  Google Scholar 

  40. Alonso J A, Martínez-Lope M J, de la Calle C and Pomjakushin V 2006 J. Mater. Chem. 16 1555

    Article  CAS  Google Scholar 

  41. Sasaki S, Prewitt C and Liebermann R 1983 Am. Mineral. 68 1189

    CAS  Google Scholar 

  42. Huo G, Song D, Yang Q and Dong F 2008 Ceram. Int. 34 497

    Article  CAS  Google Scholar 

  43. Shannon R D 1976 Acta Crystall. A32 751

    Article  CAS  Google Scholar 

  44. Salinas-Sanchez A, Garcia-Munoz J L, Rodriguez-Carvajal J, Saez-Puche R and Martinez J L 1992 J. Solid State Chem. 100 201

    Article  CAS  Google Scholar 

  45. Brown I D 2009 Chem. Rev. 109 6858

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the BAS-MANU Collaborative Project “Structural characterization and investigation of electrical and catalytic properties of new synthesized complex perovskites” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S IMITROVSKA-LAZOVA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

IMITROVSKA-LAZOVA, S., ALEKSOVSKA, S. & TZVETKOV, P. Synthesis and crystal structure determination of YCo1−x Fe x O3 (x = 0, 0.33, 0.5, 0.67 and 1) perovskites. J Chem Sci 127, 1173–1181 (2015). https://doi.org/10.1007/s12039-015-0878-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-0878-y

Keywords

Navigation