Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Designing pH-responsive and dielectric hydrogels from cellulose nanocrystals

  • 552 Accesses

  • 18 Citations

Abstract

We report the fabrication and characterization of a pHresponsive hydrogel with improved mechanical and dielectric properties from cellulose nanocrystals. X-ray diffraction and SEM observations were used to analyze the sample morphology. The resulting pH detector exhibits a pronounced change in their swelling index in response to variation in pH. It was used singly and in combination with other nanomaterials to optimize smart material designs. The applications of the developed material are anticipated in chemical, environmental and biological systems.

A pH-responsive hydrogel with improved mechanical and dielectric properties prepared from cellulose nanocrystals is reported. The resulting pH hydrogel exhibits a pronounced change in their swelling index in responsive to variation in pH. It also illustrates significant improvement in the dielectric constant which is thus useful in energy storage applications.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. 1.

    Yin C Y, Li J B, Xu Q, Peng Q, Liu Y B and Shen X Y 2007 Carbohydr. Polym. 67 147

  2. 2.

    Kim J Yun S and Ounaies Z 2006 Macromolecules 39 4202

  3. 3.

    Mariano M, El Kissi N and Dufresne A 2014 J. Polym. Sci., Part B: Polym. Phys. 52 791

  4. 4.

    Kumar S, Hofmann M, Steinmann B, Foster E J and Weder C 2012 ACS Appl. Mater. Interfaces 4 5399

  5. 5.

    Azizi Samir M A, Alloin F and Dufresne A 2005 Biomacromolecules 6 612

  6. 6.

    Mueller S, Weder C and Foster E J 2013 RSC Adv 10 907

  7. 7.

    Marchessault R H, Morehead F F and Walter N M 1959 Nature 184 632

  8. 8.

    Sadasivuni K K, Kafy A, Zhai L, Ko H U, Mun S and Kim J 2014 Small 10 1002

  9. 9.

    Siqueira G., Bras J and Dufresne A 2009 Biomacromolecules 10 425

  10. 10.

    Favier V, Chanzy H and Cavaille J Y 1995 Macromolecules 28 6365

  11. 11.

    Samir M A S A, Alloin F, Sanchez J Y and Dufresne A 2004 Macromolecules 15 37

  12. 12.

    Samir M A S A, Alloin F and Dufresne A 2005 Biomacromolecules 6 612

  13. 13.

    Eichhorn S J, Dufresne A, Aranguren M, Marcovich N E, Capadona J R, Rowan S J, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito A N, Mangalam A, Simonsen J, Benight A S, Bismarck A, Berglund L A and Peijs T 2010 J. Mater. Sci. 45 1

  14. 14.

    Orts W J, Shey J, Imam S H, Glenn G M, Guttman M E and Revol J F 2005 J. Polym. Environ. 13 301

  15. 15.

    Henriksson M U Q, Liu X and Berglund L A 2007 Biomacromolecules 8 3687

  16. 16.

    Renneckar S, Zink-Sharp A, Esker A R, Johnson R K and Glasser W G 2006 ACS Symp. Ser. 938 78

  17. 17.

    Nielsen L J, Eyley S, Thielemans W and Aylott J W 2010 Chem. Commun. 47 4177

  18. 18.

    Samuel J, Strinkovski A, Shalom S, Lieberman K, Ottolenghi M, Acnir D and Lewis A 1994 Mater. Lett. 21 431

  19. 19.

    Roy S G, Haldar U and De P 2014 ACS Appl. Mater. Interfaces 6 4233

  20. 20.

    Patil N, Soni J, Ghosh N and De P 2012 J. Phys. Chem. B 116 13913

  21. 21.

    Seari L A and Seitz W R 1982 Anal. Chem. 54 821

  22. 22.

    Fulati A, Usanman Ali S M, Riaz M, Amin G, Nur O and Roth M 2006 J. Electroanal. Chem. 586 72

  23. 23.

    Lam C W, James J T, McCluskey R, Arepalli S and Hunter R L 2006 Crit. Rev. Toxicol. 36 189

  24. 24.

    Clift M J D, Foster E J, Vanhecke D, Studer D, Wick P, Gehr P, Rothen-Rutishauser B and Weder C 2011 Biomacromolecules 12 3666

  25. 25.

    Dong S, Hirani A A, Colacino K R, Lee Y W and Roman M 2012 Nano Life 2 11

  26. 26.

    Edwards J V, Prevost N, French A, Concha M, DeLucca A and Wu Q 2013 Engineering 5 20

  27. 27.

    Sadasivuni K K, Yadav M, Gao X, Mun S and Kim J 2014 Proc. SPIE 9060 Nanosensors, Biosensors, and Info-Tech Sensors and Systems 10 1117

  28. 28.

    Shukla N B and Madras G 2011 Ind. Eng. Chem. Res. 50 10918

  29. 29.

    Roy S G and De P 2014 Polymer 55 5425

  30. 30.

    Chu Y, Varanasi P P, McGlade M J and Varanasi S 1995 J. Appl. Polymer Sci. 58 2161

  31. 31.

    Grimshaw P E, Grodzinsky A J, Yarmush M L and Yarmush D M 1990 Chem. Eng. Sci. 45 2917

  32. 32.

    Ruckenstein E and Sasidhar V 1984 Chem. Eng. Sci. 39 1185

  33. 33.

    Sadasivuni K K, Ponnamma D, Kumar B, Strankowskie M, Cardinaels R, Moldenaers P, Thomas S and Grohens Y 2014 Compos. Sci. Technol. 104 18

  34. 34.

    Sadasivuni K K, Castro M, Saiter A, Delbreilh L, Feller J F, Thomas S and Grohens Y 2013 Mater. Lett. 96 109

  35. 35.

    Kafy A, Sadasivuni K K, Kim H-C, Akther A and Kim J 2014 Phys. Chem. Chem. Phys., DOI: 10.1039/C4CP05921B

  36. 36.

    Sadasivuni K K, Saiter A, Gautier N, Thomas S and Grohens Y 2013 Colloid Polym. Sci. 291 1729

  37. 37.

    Sadasivuni K K, Ponnamma D, Thomas S. and Grohens Y 2014 Prog. Polym. Sci. 39 749

  38. 38.

    Ponnamma D, Sadasivuni K K, Grohens Y, Guo Q and Thomas S 2014 J. Mater. Chem. C 2 8446

  39. 39.

    Yuan J, Yao S, Dong Z, Sylvestre A, Genestoux M and Bai J 2011 J. Phys. Chem. 115 5515

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF- 2013M3C1A3059586).

Author information

Correspondence to JAEHWAN KIM.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

GAO, X., SADASIVUNI, K.K., KIM, H. et al. Designing pH-responsive and dielectric hydrogels from cellulose nanocrystals. J Chem Sci 127, 1119–1125 (2015). https://doi.org/10.1007/s12039-015-0873-3

Download citation

Keywords

  • Cellulose
  • Cellulose Nanocrystals
  • Hydrogels
  • pH-responsive
  • Dielectric property