Skip to main content
Log in

Observation of the Unusual Aggregation Kinetics of Colloidal Minerals in Acidic Solutions

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Hofmeister (Specific ion) effects have been considered as important to chemical science as Mendel’s work was to genetics. In this work, the aggregation kinetics of montmorillonite colloids in H+, Ag+, NH\(_{4}^{+}\), K+ and Na+ solutions were measured in situ, detecting the unusual kinetics and ion specificity for H+. Activation energies that can quantitatively estimate the underlying specific ion effects change in the order of H+ < Ag+ < NH\(_{4}^{+}<\) K+ < Na+. Meanwhile, it was found that although the aggregation of montmorillonite colloids with lower particle densities results in higher activation energies, Hofmeister series will not be affected. It was sufficiently testified that interaction energies of colloidal particles with adsorbed ions show fine correlation with activation energies for colloidal aggregation, and larger interaction energy corresponds to lower activation energy. An attempt was made to quantitatively estimate the ion specificity for H+, and it was substantialized that the unusual ion specificity of H+ is caused by steric effect.

Synopisis: The aggregation kinetics of montmorillonite colloids in H+, Ag+, NH\(_{4}^{+}\), K+ and Na+ solutions were measured in situ, detecting the unusual kinetics and ion specificity for H+. It has been substantialized that the unusual ion specificity of H+ is caused by steric effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Scheme 1

References

  1. Aurell C and Wistrom A 2000 Colloids Surf., A 168 277

    Article  CAS  Google Scholar 

  2. Ferrone F 1999 Method Enzymol. 309 256

    Article  CAS  Google Scholar 

  3. Molina-Bolívar J, Galisteo-González F and Hidalgo-Álvarez R 1997 Phys. Rev. E 55 4522

    Article  Google Scholar 

  4. Wang H, Burgess R, Cantwell M, Portis L, Perron M, Wu F and Ho K 2014 Environ. Toxicol. Chem. 33 1023

    Article  CAS  Google Scholar 

  5. Haynes D, Lansman J, Cahill A and Morris S 1979 BBA-Biomembranes 557 340

    Article  CAS  Google Scholar 

  6. Morris S, Chiu V and Haynes D 1979 Mol. Membr. Biol. 2 163

    Article  CAS  Google Scholar 

  7. Bezot P, Hesse-Bezot C, Rousset B and Diraison C 1995 Colloids Surf., A 97 53

    Article  CAS  Google Scholar 

  8. Verwey E and Overbeek J 1948 In Theory of the stability of lyophobic colloids (Elsevier: New York) p. 631

  9. Missana T and Adell A 2000 J. Colloid Interf. Sci. 230 150

    Article  CAS  Google Scholar 

  10. Boström M, Deniz V, Franks G and Ninham B 2006 Adv. Colloid Interf. Sci. 123-126 5

    Article  Google Scholar 

  11. Ninham B and Yaminsky V 1997 Langmuir 13 2097

    Article  CAS  Google Scholar 

  12. Ninham B, Duignan T and Parsons D 2011 Curr. Opin. Colloid Interf. Sci. 16 612

    Article  CAS  Google Scholar 

  13. Para G, Jarek E and Warszynski P 2006 Adv. Colloid Interf. Sci. 122 39

    Article  CAS  Google Scholar 

  14. Kershner R, Bullard J and Cima M 2004 Langmuir 20 4101

    Article  CAS  Google Scholar 

  15. Kim H, Lee H, Lee G, Kim H and Cho M 2012 J. Chem. Phys. 136 124501

    Article  Google Scholar 

  16. Date M and Dominy B 2013 Commun. Comput. Phys. 13 90

    Google Scholar 

  17. Salis A, Bilanicova D, Ninham B and Monduzzi M 2007 J. Phys. Chem. B 111 1149

    Article  CAS  Google Scholar 

  18. Bauduin P, Nohmie F, Touraud D, Neueder R, Kunz W and Ninham B 2006 J. Mol. Liq. 123 14

    Article  CAS  Google Scholar 

  19. Pakulova O, Gorobchenko O, Nikolov O, Adelyanov A, Pastukhova S and Bondarenko V 2013 Mater. Wiss. Werkst. Tech. 44 167

    Article  Google Scholar 

  20. Zhang Y, Furyk S, Bergbreiter D and Cremer P 2005 J. Am. Chem. Soc. 127 14505

    Article  CAS  Google Scholar 

  21. Wang M, Wang Y, Yu D, Han Y and Wang Y 2013 Colloid Polym. Sci. 291 1613

    Article  CAS  Google Scholar 

  22. Thormann E 2012 RSC Adv. 2 8297

    Article  CAS  Google Scholar 

  23. Grover P and Ryall R 2005 Chem. Rev. 105 1

    Article  CAS  Google Scholar 

  24. Broering J and Bommarius A 2005 J. Phys. Chem. B 109 20612

    Article  CAS  Google Scholar 

  25. López-León T, Ortega-Vinuesa J and Bastos-González D 2012 Chem. Phys. Chem. 13 2382

    Google Scholar 

  26. Holthoff H, Egelhaaf S, Borkovec M, Schurtenberger P and Sticher H 1996 Langmuir 12 5541

    Article  CAS  Google Scholar 

  27. Jia M, Li H, Zhu H, Tian R and Gao X 2013 J. Soil Sediment 13 325

    Article  CAS  Google Scholar 

  28. Tian R, Yang G, Li H, Gao X, Liu X, Zhu H and Tang Y 2014 Phys. Chem. Chem. Phys. 16 8828

    Article  CAS  Google Scholar 

  29. Gouy G 1910 J. Phys. Radium 9 457

    CAS  Google Scholar 

  30. Chapman D 1913 Philo. Mag. 25 475

    Article  Google Scholar 

  31. Debye P and Hückel E 1923 Phys. Z. 24 185

    CAS  Google Scholar 

  32. Stern O 1924 Zeit. Elektrochem. 30 508

    CAS  Google Scholar 

  33. Grahame D 1953 J. Chem. Phys. 21 1054

    Article  CAS  Google Scholar 

  34. Bokade V and Yadav G 2007 J. Nat. Gas Chem. 16 186

    Article  CAS  Google Scholar 

  35. Karaborni S, Smit B, Heidug W, Urai J and Oort E 1996 Science 271 1102

    Article  CAS  Google Scholar 

  36. Pedarla A, Chittoori S and Puppala A 2011 Transp. Res. Rec. 91

  37. Chittoori B and Puppala A 2011 J. Geotech. Geoenviron. Eng. 137 997

    Article  CAS  Google Scholar 

  38. Bandgar B, Pandit S and Sadavarte V 2001 Green Chem. 3 247

    Article  CAS  Google Scholar 

  39. Yadav G and Doshi N 2002 Appl. Catal. A-Gen. 236 129

    Article  CAS  Google Scholar 

  40. Edelman C and Favejee J 1940 Z. Krist.-Cryst. Mater. 102 417

    CAS  Google Scholar 

  41. Xiong Y, Chen J and Zhang J 1985 In Soil Colloid (2): Methods for soil colloid research (In Chinese) (Beijing: Science Press) p.10

  42. Tian R, Li H, Zhu H, Liu X and Gao X 2013 Soil Sci. Soc. Am. J. 77 774

    Article  CAS  Google Scholar 

  43. Liu X, Yang G, Li H, Tian R, Li R, Jiang X, Ni J and Xie D 2014 RSC Adv 4 1189

    Article  CAS  Google Scholar 

  44. Marcus Y 1997 In Ion properties (New York: Marcel Dekker)

  45. Lagaly G and Ziesmer S 2003 Adv. Colloid Interface Sci. 100–102 105

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (41201223, 41371249 and 21473137), Fundamental Research Funds for the Central Colleges (SWU113049 and 2362014xk01) and Specialized Research Fund for the Doctoral Program of Higher Education (20110182120 002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to GANG YANG, CHENGZHI HUANG or HANG LI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

TIAN, R., YANG, G., LIU, X. et al. Observation of the Unusual Aggregation Kinetics of Colloidal Minerals in Acidic Solutions. J Chem Sci 127, 1083–1089 (2015). https://doi.org/10.1007/s12039-015-0872-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-0872-4

Keywords

Navigation