Abstract
Electrocatalysis is an important phenomenon which is utilized in metal–air batteries, fuel cells, electrochemical sensors, etc. To increase the efficiency of the electrocatalytic process and to increase the electrochemical accessibility of the immobilized electrocatalysts, functionalized and non-functionalized mesoporous organo-silica (MCM41-type-materials) are used in this study. These materials possess several suitable properties to be durable catalysts and/or catalyst supports. Owing to the uniform dispersion of electrocatalysts (metal complex and/or metal nanoparticles (NPs)) on the functionalized and non-functionalized silica, an enormous increase in the redox current is observed. Long range channels of silica materials with pore diameter of 15–100 Å allowed metal NPs to accommodate in a specified manner in addition to other catalysts. The usefulness of MCM-41-type silica in increasing the efficiency of electrocatalysis is demonstrated by selecting oxygen, carbon dioxide and nitrite reduction reactions as examples.

To increase the efficiency of electrocatalytic process and electrochemical accessibility of immobilized electrocatalysts, functionalized and nonfunctionalized mesoporous organo-silica are used. Uniform dispersion of metal nanoparticles and/or electrocatalysts on silica enormously increases the reduction current. Presence of metal nanoparticles significantly improves the electrocatalytic reduction of oxygen, carbon dioxide and nitrite.
This is a preview of subscription content, access via your institution.









References
Walcarius A and Kuhn A 2008 Trends Anal. Chem. 27 593
Pal M and Ganesan V 2009 Langmuir 25 13264
Walcarius A and Delacote C 2003 Chem. Mater. 15 4181
Ganesan V and Walcarius A 2004 Langmuir 20 3632
Walcarius A and Ganesan V 2006 Langmuir 22 469
Kresge C T, Leonowicz M E, Roth W J, Vartuli J C and Beck J S 1992 Nature 359 710
Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, McCullen S B, Higgins J B and Schlenker J L 1992 J. Am. Chem. Soc. 114 10834
Walcarius A, Etienne M and Bessiere J 2002 Chem. Mater. 14 2757
Walcarius A, Etienne M and Lebeau B 2003 Chem. Mater. 15 2161
Walcarius A 2013 Chem. Soc. Rev. 42 4098
Pal M and Ganesan V 2010 Electrochim. Acta 55 4071
Pal M and Ganesan V 2010 Analyst 135 2711
Jena B K and Raj C R 2007 J. Phys. Chem. C 111 6228
Ramendra D S, Raj B K and Raj R C 2013 Anal. Bioanal. Chem. 405 3431
Vasimalai N and John A S 2014 Sens. Actuators B 190 800
Azad U P and Ganesan V 2010 Chem. Commun. 46 6156
Azad U P, Ganesan V and Pal M 2011 J. Nanopart Res. 13 3951
Pal M and Ganesan V 2012 J. Electroanal. Chem. 672 7
Pal M and Ganesan V 2012 Catal. Sci. Tech. 2 2383
Pal M, Ganesan V and Azad U P 2012 Thin Solid Films 525 172
Rastogi P K, Ganesan V and Krishnamoorthi S 2014 J. Mater. Chem. A 2 933
Rastogi P K, Ganesan V and Krishnamoorthi S 2014 Electrochim. Acta 1 148
Boyen H G, Herzog T, Kastle G, Weigl F, Ziemann P, Spatz J P, Moller M, Wahrenberg R, Garnier M G and Oelhafen P 2002 Phys. Rev. B 65 75412
Akolekar D B and Bhargava S K 2005 J. Mol. Catal. A Chem. 236 77
Etienne M, Lebeau B and Walcarius A 2002 New J. Chem. 26 384
Martin C R, Rubinstein I and Bard A J 1982 J. Am. Chem. Soc. 104 4817
Buttry D A and Anson F C 1983 J. Am. Chem. Soc. 105 685
White H S, Leddy J and Bard A J 1982 J. Am. Chem. Soc. 104 4811
Ramaraj R 1996 Proc. Indian Acad. Sci. Chem. Sci. 108 181
Ernst S and Selle M 1999 Micro. Meso. Mat. 27 355
Lu X B, Wang H and He R 2002 J. Mol. Catal. A Chem. 186 33
Fuerte A, Corma A, Iglesias M, Morales E and Sanchez F 2006 J. Mol. Catal. A Chem. 246 109
Ponce I, Silva J F, Onate R, Rezende M C, Paez M A, Zagal J H and Pavez J 2012 J. Phys. Chem. C, 116, 15329
Magdesieva T V, Yamamoto T, Tryk T A and Fujishima A 2002 J. Electrochem. Soc. 149 D89
Sonoyama N, Kirii M and Sakata T 1999 Electrochem. Commun. 1 213
Chebotareva N and Nyokong T 1997 J. Appl. Elechem. 27 975
Silva S D, Shan D and Cosnier S 2004 Sens. Actuators B 103 397
Narvaez A, Dominguez E, Katakis I, Katz E, Ranjit K T, BenDov I and Willner I 1997 J. Electroanal. Chem. 430 227
Hwang S, Lee J and Kwak J 2005 J. Electroanal. Chem. 579 143
Ganesan V, Pal M and Tiwari M 2014 Bull. Mater. Sci. 37 623
Bottcher A, Elian H, Jager E G, Langfelderova H, Mazur M, Muller L, Paulus H, Pelikan P, Rudolph, M and Valko M 1993 Inorg. Chem. 32 4131
Chen H, Cronin J A, and Archer R D 1995 Inorg. Chem. 34 2306
Kantam M L and Bharathi B 1998 Catal. Lett. 55 235
Rodrigues S, Uma S, Martyanov I N and Klabunde K J 2005 J. Mol. Catal. A Chem. 233 405
Giraudeau A, Louati A, Gross M, Andre J, Simon J, Su C H and Kadish K M 1983 J. Am. Chem. Soc. 105 2917
Okada T, Gotou S, Yoshida M, Yuasa M, Hirose T and Sekine I 1999 J. Inorg. Organomet. Polym. 9, 199
Moad A J, Klein L J, Peters D G, Karty J A and Reilly J P 2002 J. Electroanal. Chem. 531 163
Geigar T and Anson F C 1981 J. Am. Chem. Soc. 103 7489
Eggins B R, Irvine J T S and Grimshaw J 1989 J. Electroanal. Chem. 266 125
Begum A and Pickup P G 2007 Electrochem. Commun. 9 2525
Acknowledgements
The author thanks UGC, CSIR and DST, New Delhi for funding. The author also thanks Prof. S K Sengupta and Dr. Manas Pal for useful suggestions.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
GANESAN, V. Functionalized silica materials for electrocatalysis. J Chem Sci 127, 307–313 (2015). https://doi.org/10.1007/s12039-015-0778-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12039-015-0778-1
Keywords
- Functionalized silica
- electrocatalysis
- metal nanoparticles
- oxygen reduction
- carbon dioxide reduction
- nitrite reduction.