Thermal decomposition of 1-chloropropane behind the reflected shock waves in the temperature range of 1015–1220 K: Single pulse shock tube and computational studies

Abstract

The thermal decomposition of 1-chloropropane in argon was studied behind reflected shock waves in a single pulse shock tube over the temperature range of 1015–1220 K. The reaction mainly goes through unimolecular elimination of HCl. The major products observed in the decomposition are propylene and ethylene, while the minor products identified are methane and propane. The rate constant for HCl elimination in the studied temperature range is estimated to be k(1015–1220 K) = 1.63 × 1013exp(-(60.1 ± 1.0) kcal mol−1/RT) s−1. The DFT calculations were carried out to identify the transition state(s) for the major reaction channel; and rate coefficient for this reaction is obtained to be k(800–1500 K) = 5.01 × 1014exp(-(58.8) kcal mol−1/RT) s−1. The results are compared with the experimental findings.

The thermal decomposition of 1-chloropropane was studied behind reflected shock waves over a temperature range of 1015–1220 K. The radical chemistry is important in addition to the low-barrier unimolecular HCl elimination. The major products are propylene and ethylene and the minor products are methane and propane. Experimentally estimated and computationally calculated Arrhenius expressions for HCl elimination are reported in this paper.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  1. 1.

    Graham J L, Hall D L and Dellinger B 1986 Environ. Sci. Tech. 20 703

  2. 2.

    Oppelt E T 1987 J. Air Pollut. Control. Assoc. 37 558

  3. 3.

    Yang M, Karra S B and Senkan S M 1987 Hazard. Waste. Hazard. Mater. 4 55

  4. 4.

    Hart J R and Franco G 1989 Proceedings of the Third Symposium on the Incineration of Hazardous Wastes, Paper 15, San Diego, CA

  5. 5.

    Barton D H R, Head A J and Williams R J 1951 J. Chem. Soc. 2039

  6. 6.

    Hartmann H, Bosche H G and Heydtmann H 1964 Z. Phys. Chem (Neue Folge). 42 329

  7. 7.

    Evans P J, Ichimura T and Tschuikow-Roux E 1978 Int. J. Chem. Kinet. 10 855

  8. 8.

    Okada K, Tschuikow-Roux E and Evans P J 1980 J. Phys. Chem. 84 467

  9. 9.

    Saheb V 2013 Struct Chem. DOI 10.1007/s11224- 013-0240-2

  10. 10.

    Gaydon A G and Hurle I R 1963 The shock tube in high temperature chemical physics, (New York: Reinhold Publishing)

  11. 11.

    Tsang W 1965 J. Chem. Phys. 42 1805

  12. 12.

    Stranic I, Davidson D F and Hanson R K 2013 Chem. Phys. Lett. 584 18

  13. 13.

    Tsang W, Walker J A and Braun W 1982 J. Phys. Chem. 86 719

  14. 14.

    Karra S B and Senkan S M 1988 Ind. Eng. Chem. Res. 27 447

  15. 15.

    Warnatz J 1984 In Combustion Chemistry (ed.) W C Gardiner Jr. (New York: Springer-Verlag)

  16. 16.

    Tsang W 1985 J. Am. Chem. Soc. 107 2872

  17. 17.

    Forst W 1991 J. Phys. Chem. 95 3612

  18. 18.

    Tsang W 1988 J. Phys. Chem. Ref. Data. 17 887

  19. 19.

    Lloyd A C 1971 Int. J. Chem. Kinet. 3 39

  20. 20.

    Barat R B and Bozzelli J W 1992 J. Phys. Chem. 96 2494

  21. 21.

    Roussel P B, Lightfoot P D, Caralp F, Catoire V, Lesclaux R and Forst W 1991 J. Chem. Soc. Faraday Trans. 87 2367

  22. 22.

    Hidaka Y, Nakamura T, Tanaka H, Jinno A and Kawano H 1992 Int. J. Chem. Kinet. 24 761

  23. 23.

    Knyazev V D, Bencsura A, Stoliarov S I and Slagle I R 1996 J. Phys. Chem. 100 11346

  24. 24.

    Tsang W 1991 J. Phys. Chem. Ref. Data. 20 221

  25. 25.

    Lifshitz A, Tamburu C and Suslensky A 1990 J. Phys. Chem. 94 2966

  26. 26.

    Arthur N L and Bell T N 1978 Rev. Chem. Intermed. 2 37

  27. 27.

    Macken K V and Sidebottom H W 1979 Int. J. Chem. Kinet. 11 511

  28. 28.

    Knyazev V D, Kalinovski I J and Slagle I R 1999 J. Phys. Chem. A. 103 3216

  29. 29.

    Stewart P H, Larson C W and Golden D M 1989 Combust. Flame. 75 25

  30. 30.

    Garrett B C and Truhlar D G 1979 J. Am. Chem. Soc. 101 5207

  31. 31.

    Bryukov M G, Slagle I R and Knyazev 2001 J. Phys. Chem. A. 105 3107

  32. 32.

    Kern R D, Singh H J and Wu C H 1988 Int. J. Chem. Kinet. 20 731

  33. 33.

    Curran H J 2006 Int. J. Chem. Kinet. 38 250

  34. 34.

    Becke A D 1993 J. Chem. Phys. 98 5648

  35. 35.

    Lee C, Yang W and Parr R G 1986 Phys. Rev. B. 37 785

  36. 36.

    Francl M, Pietro W J, Hehre W J, Binkley J S, Gordon M S, Defrees D J and Pople J A 1982 J. Chem. Phys. 77 3654

  37. 37.

    Frisch M J, Pople J A and Binkley J S 1989 J. Chem. Phys. 80 3265

  38. 38.

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Jr, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J and Fox D J 2010 Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT

  39. 39.

    Curtiss L A, Redfern P C, Raghavachari K, Rassolov V and Pople J A 1999 J. Chem. Phys. 110 4703

  40. 40.

    Gonzalez C and Schlegel H B 1989 J. Chem. Phys. 90 2154

  41. 41.

    Wright M R 1999 Fundamental Chemical Kinetics: An Explanatory Introduction to the Concepts (Horwood Series in Chemical Science) (UK: Woodhead Publishing)

Download references

Acknowledgements

We acknowledge the financial support from Council of Scientific & Industrial Research (CSIR), India, for establishing the Single Pulse Shock Tube. We thank Mr. V Ravichandran of High Performance Computing Environment Facility for his valuable support, Mr. A Parandhaman for his help in the experiments and Mr. M Balaganesh for fruitful discussion. Mr. G Balaganesan of central workshop is acknowledged for the workshop support in the establishment of the shock tube facility.

Author information

Affiliations

Authors

Corresponding author

Correspondence to B RAJAKUMAR.

Additional information

Supplementary Information

The electronic supplementary information (tables S1, S2, S3, S4 and S5) can be seen at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 270 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

SUDHAKAR, G., RAJAKUMAR, B. Thermal decomposition of 1-chloropropane behind the reflected shock waves in the temperature range of 1015–1220 K: Single pulse shock tube and computational studies. J Chem Sci 126, 897–909 (2014). https://doi.org/10.1007/s12039-014-0666-0

Download citation

Keywords

  • 1-chloropropane
  • SPST
  • simulations and DFT studies