Advertisement

Journal of Chemical Sciences

, Volume 126, Issue 4, pp 897–909 | Cite as

Thermal decomposition of 1-chloropropane behind the reflected shock waves in the temperature range of 1015–1220 K: Single pulse shock tube and computational studies

  • G SUDHAKAR
  • B RAJAKUMAREmail author
Article

Abstract

The thermal decomposition of 1-chloropropane in argon was studied behind reflected shock waves in a single pulse shock tube over the temperature range of 1015–1220 K. The reaction mainly goes through unimolecular elimination of HCl. The major products observed in the decomposition are propylene and ethylene, while the minor products identified are methane and propane. The rate constant for HCl elimination in the studied temperature range is estimated to be k(1015–1220 K) = 1.63 × 1013exp(-(60.1 ± 1.0) kcal mol−1/RT) s−1. The DFT calculations were carried out to identify the transition state(s) for the major reaction channel; and rate coefficient for this reaction is obtained to be k(800–1500 K) = 5.01 × 1014exp(-(58.8) kcal mol−1/RT) s−1. The results are compared with the experimental findings.

Graphical Abstract

The thermal decomposition of 1-chloropropane was studied behind reflected shock waves over a temperature range of 1015–1220 K. The radical chemistry is important in addition to the low-barrier unimolecular HCl elimination. The major products are propylene and ethylene and the minor products are methane and propane. Experimentally estimated and computationally calculated Arrhenius expressions for HCl elimination are reported in this paper.

Keywords

1-chloropropane SPST simulations and DFT studies 

Notes

Acknowledgements

We acknowledge the financial support from Council of Scientific & Industrial Research (CSIR), India, for establishing the Single Pulse Shock Tube. We thank Mr. V Ravichandran of High Performance Computing Environment Facility for his valuable support, Mr. A Parandhaman for his help in the experiments and Mr. M Balaganesh for fruitful discussion. Mr. G Balaganesan of central workshop is acknowledged for the workshop support in the establishment of the shock tube facility.

Supplementary material

12039_2014_666_MOESM1_ESM.doc (270 kb)
(DOC 270 KB)

References

  1. 1.
    Graham J L, Hall D L and Dellinger B 1986 Environ. Sci. Tech. 20 703Google Scholar
  2. 2.
    Oppelt E T 1987 J. Air Pollut. Control. Assoc. 37 558Google Scholar
  3. 3.
    Yang M, Karra S B and Senkan S M 1987 Hazard. Waste. Hazard. Mater. 4 55Google Scholar
  4. 4.
    Hart J R and Franco G 1989 Proceedings of the Third Symposium on the Incineration of Hazardous Wastes, Paper 15, San Diego, CAGoogle Scholar
  5. 5.
    Barton D H R, Head A J and Williams R J 1951 J. Chem. Soc. 2039Google Scholar
  6. 6.
    Hartmann H, Bosche H G and Heydtmann H 1964 Z. Phys. Chem (Neue Folge). 42 329Google Scholar
  7. 7.
    Evans P J, Ichimura T and Tschuikow-Roux E 1978 Int. J. Chem. Kinet. 10 855Google Scholar
  8. 8.
    Okada K, Tschuikow-Roux E and Evans P J 1980 J. Phys. Chem. 84 467Google Scholar
  9. 9.
    Saheb V 2013 Struct Chem. DOI 10.1007/s11224- 013-0240-2Google Scholar
  10. 10.
    Gaydon A G and Hurle I R 1963 The shock tube in high temperature chemical physics, (New York: Reinhold Publishing)Google Scholar
  11. 11.
    Tsang W 1965 J. Chem. Phys. 42 1805Google Scholar
  12. 12.
    Stranic I, Davidson D F and Hanson R K 2013 Chem. Phys. Lett. 584 18Google Scholar
  13. 13.
    Tsang W, Walker J A and Braun W 1982 J. Phys. Chem. 86 719Google Scholar
  14. 14.
    Karra S B and Senkan S M 1988 Ind. Eng. Chem. Res. 27 447Google Scholar
  15. 15.
    Warnatz J 1984 In Combustion Chemistry (ed.) W C Gardiner Jr. (New York: Springer-Verlag)Google Scholar
  16. 16.
    Tsang W 1985 J. Am. Chem. Soc. 107 2872Google Scholar
  17. 17.
    Forst W 1991 J. Phys. Chem. 95 3612Google Scholar
  18. 18.
    Tsang W 1988 J. Phys. Chem. Ref. Data. 17 887Google Scholar
  19. 19.
    Lloyd A C 1971 Int. J. Chem. Kinet. 3 39Google Scholar
  20. 20.
    Barat R B and Bozzelli J W 1992 J. Phys. Chem. 96 2494Google Scholar
  21. 21.
    Roussel P B, Lightfoot P D, Caralp F, Catoire V, Lesclaux R and Forst W 1991 J. Chem. Soc. Faraday Trans. 87 2367Google Scholar
  22. 22.
    Hidaka Y, Nakamura T, Tanaka H, Jinno A and Kawano H 1992 Int. J. Chem. Kinet. 24 761Google Scholar
  23. 23.
    Knyazev V D, Bencsura A, Stoliarov S I and Slagle I R 1996 J. Phys. Chem. 100 11346Google Scholar
  24. 24.
    Tsang W 1991 J. Phys. Chem. Ref. Data. 20 221Google Scholar
  25. 25.
    Lifshitz A, Tamburu C and Suslensky A 1990 J. Phys. Chem. 94 2966Google Scholar
  26. 26.
    Arthur N L and Bell T N 1978 Rev. Chem. Intermed. 2 37Google Scholar
  27. 27.
    Macken K V and Sidebottom H W 1979 Int. J. Chem. Kinet. 11 511Google Scholar
  28. 28.
    Knyazev V D, Kalinovski I J and Slagle I R 1999 J. Phys. Chem. A. 103 3216Google Scholar
  29. 29.
    Stewart P H, Larson C W and Golden D M 1989 Combust. Flame. 75 25Google Scholar
  30. 30.
    Garrett B C and Truhlar D G 1979 J. Am. Chem. Soc. 101 5207Google Scholar
  31. 31.
    Bryukov M G, Slagle I R and Knyazev 2001 J. Phys. Chem. A. 105 3107Google Scholar
  32. 32.
    Kern R D, Singh H J and Wu C H 1988 Int. J. Chem. Kinet. 20 731Google Scholar
  33. 33.
    Curran H J 2006 Int. J. Chem. Kinet. 38 250Google Scholar
  34. 34.
    Becke A D 1993 J. Chem. Phys. 98 5648Google Scholar
  35. 35.
    Lee C, Yang W and Parr R G 1986 Phys. Rev. B. 37 785Google Scholar
  36. 36.
    Francl M, Pietro W J, Hehre W J, Binkley J S, Gordon M S, Defrees D J and Pople J A 1982 J. Chem. Phys. 77 3654Google Scholar
  37. 37.
    Frisch M J, Pople J A and Binkley J S 1989 J. Chem. Phys. 80 3265Google Scholar
  38. 38.
    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Jr, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J and Fox D J 2010 Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CTGoogle Scholar
  39. 39.
    Curtiss L A, Redfern P C, Raghavachari K, Rassolov V and Pople J A 1999 J. Chem. Phys. 110 4703Google Scholar
  40. 40.
    Gonzalez C and Schlegel H B 1989 J. Chem. Phys. 90 2154Google Scholar
  41. 41.
    Wright M R 1999 Fundamental Chemical Kinetics: An Explanatory Introduction to the Concepts (Horwood Series in Chemical Science) (UK: Woodhead Publishing)Google Scholar

Copyright information

© Indian Academy of Sciences 2014

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations