Skip to main content
Log in

Chitosan-based Schiff base-metal complexes (Mn, Cu, Co) as heterogeneous, new catalysts for the β-isophorone oxidation

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A new chitosan-based Schiff base was prepared and complexed with manganese, cobalt and copper. These Schiff base metal complexes were used as heterogeneous catalysts for the air oxidation of β-isophorone to ketoisophorone. The obtained complexes were characterized by means of FT-IR,1HNMR spectroscopy, elemental analysis, powder X-ray diffraction, field emission gun scanning electron microscopy, electron spin resonance spectroscopy, ICP-AES and solubility tests. Thermal properties were also investigated using thermal gravimetric analysis. Data obtained by thermal analysis revealed that these complexes showed good thermal stability. The conversion and selectivity of β-isophorone to ketoisophorone for each prepared catalyst was studied using a batch reactor and gas chromatography for product identification and quantification. The results were compared against the homogeneous bis-salicylaldehyde ethylenedi-imine-Mn catalyst. The use of methanol, acetone, methyl isobutyl ketone and n-hexane as solvent and its effect on conversion and selectivity was also investigated. Acetone was found to be a promising solvent for the β-isophorone oxidation. The role of triethyl amine and acetyl acetone in the oxidation reaction has also been investigated.

Heterogeneously catalyzed β-isophorone oxidation reaction by Chitosan-Schiff base-metal complexes was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Scheme 1
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Scheme 2

Similar content being viewed by others

Notes

  1. Oven, 100°C–45°C/min-280°C – 2min hold., Inlet, 250°C, Detector, 300°, split ratio, 1:500, sample injection, 0.2 μl.

  2. Gas chromatograph combined with mass spectrometry.

References

  1. Clark J H and Macquarrie D J 2002 Handbook of green chemistry and technology (Oxford: Blackwell) pp. 3–5

  2. Anastas P T, Kirchhoff M M and Williamson T C 2001 Appl. Catal. A: Gen. 221 3

  3. Ravi Kumar M N V 2000 React. Funct. Polym. 46(1) 1

  4. Vincent T and Guibal E 2002 Ind. Eng. Res. Chem. 41 5158

  5. Tang L M, Huang M Y and Jiang Y Y 1996 Chin. J. Polym. Sci. 14 57

  6. An Y, Yuan D, Huang M Y and Jiang Y Y 1994 Macromol. Symp. 80 257

  7. Tang L M, Huang M Y and Jiang Y Y 1994 Macromol. Rapid Commun. 15 527

  8. Han H S, Jiang S N, Huang M and Jiang Y Y 1996 Polym. Adv. Technol. 7 704

  9. Yin M Y, Yuan G L, Wu Y Q, Huang M Y and Liang Y Y 1999 J. Mol. Catal. A 147 93

  10. Quignard F, Choplin A and Domard A 2000 Langmuir 16 9106

  11. Buisson P and Quignard F 2002 Aust. J. Chem. 55 73

  12. Sun W, Xia C G and Wong H W 2002 New J. Chem. 26 755

  13. Chang Y, Wang Y P and Su Z X 2002 J. Appl. Polym. Sci. 83 2188

  14. Hu D, Cui Y, Dong X and Fang Y 2001 React. Funct. Polym. 48 201

  15. Arenax B J 1983 U.S. Patent 4 367 355

  16. Itozawa T and Kise H J 1995 Ferment. Bioeng. 80 30

  17. Magnin D, Dumitriu S and Chornet E 2003 J. Bioact. Compat. Polym. 18 355

  18. Pifferi P G, Bonora V, Spagna G and Tramontini M 1993 Process Biochem. 28 29

  19. Benkhelifa H, Bengoa C, Larre C, Guibal E, Popineau Y and Legrand 2005 J. Case Process Biochem. 40 461

  20. Tan T, Wang F and Zhang H 2002 J. Mol. Catal. B: Enzym. 18 325

  21. Costantini M, Dromard A, Jouffret M, Brossard B and Varagnat 1980 J. Mol. Catal. 7(1) 89

  22. Halligudi S B, Kala Raj N K, Deshpande S S and Gopinathan S 2000 J. Mol. Catal. A: Chem. 157 9

  23. Murphy E F and Baker A 2002 J. Mol. Catal. A Chem. 179 233

  24. Joseph T, Halligudi S B, Satyanarayan C, Sawant D and Gopinathan S 2001 J. Mol. Catal. A: Chem. 168 87

  25. Lopes Elaine C N, Sousa Kaline S and Airoldi C 2009 Thermochim. Acta 483 21

  26. HerrmarinWA (ed.) 2000 Synthetic methods of organometallic and inorganic chemistry: Transition metals – Part 3 (Stuttgart: Georg Thieme Verlag) p. 130

  27. Samuels R J 1981 J. Polym. Sci. Polym. Phys. Ed. 19 1081

  28. Lomadze N and Schneider H J 2005 Tetrahedron 61 8694

  29. Jiao, Feng T, Zhou, Zhou J, Li J X, Gao Y H, Yuan X and Hui L X 2011 Iranian Polymer J. 20(2) 123

  30. Toyssie P and Charette J J 1963 Spectrochim. Acta 19 1407

  31. Sarawat S, Srivastava G S and Mehrotra R C 1977 J. Organomet. Chem. 129 155

  32. Jha N K and Joshi D M 1984 Synth. Inorg. Met. Org. Chem. 14 455

  33. Uneo K and Martell A E 1956 J. Phys. Chem. 60 1270

  34. Wang G and Chang J C 1994 Synth. Inorg. Met. Org. Chem. 24 1091

  35. Gruber S J, Harris C M and Sinn E 1968 J. Inorg. Nucl. Chem. 30 1805

  36. Lane T J, Nakagawa I, Walter J L and Kandathil A J 1962 Inorg. Chem. 1(2) 267

  37. Batista M K, Pinto S L F, Gomes C A R and Gomes P 2006 Carbohyd. Polym. 64 299

  38. Feichtinger D and Platter D 1997 Angew. Chem. Int. Ed. Engl. 36 1718

  39. Feichtinger D and Plattner D 2001 Chem. Eur. J. 7 591

  40. Plattner D A, Feichtinger D, ElBahraoui J and Wiest O 2000 Int. J. Mass Spectrom. 195/196 351

  41. Collins T J and GordonWylie A W 1989 J. Am. Chem. Soc. 111 4511

  42. Huie B T, Leyden R M and Schaefer W P 1979 Inorg. Chem. 18 125

  43. Schaefer W P, Huie B T, Kurilla M G and Ealick S E 1980 Inorg. Chem. 19 340

  44. Miller C G, GordonWylie S W, Horwitz C P, Strazisar S A, Peraino D K, Clark G R, Weintraub S T and Collins T J 1998 J. Am. Chem. Soc. 120 11540

  45. Avdeef A and Shaefer W P 1976 J. Am. Chem. Soc. 98 5153

  46. Ruselet G A, Janzen E G, Bemis A G, Geels E J, Moye A J, Mak S and Strom E T 1965 Adv. Chem. Ser. 51 112

Download references

Acknowledgements

The authors thank Dr M K Pejavar, B N Bandodkar College of Science, Thane, India for providing the necessary infrastructure. The authors are also thankful to Dr P S Kumbhar and Dr A N Dixit, SI-Group (I) Ltd. for their valuable support during this research. Our thanks are also due to Dr R C Mhamane SI-Group (I) Ltd. and Dr Vinit Makwana, Reliance Industries Ltd for their helpful discussions during this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M V RATHNAM.

Additional information

Supplementary information

Spectroscopic characterization data are available as supporting information (figures S1–S11) in the Journal of Chemical Sciences website (www.ias.ac.in/chemsci).

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 675 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

THATTE, C.S., RATHNAM, M.V. & PISE, A.C. Chitosan-based Schiff base-metal complexes (Mn, Cu, Co) as heterogeneous, new catalysts for the β-isophorone oxidation. J Chem Sci 126, 727–737 (2014). https://doi.org/10.1007/s12039-014-0601-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-014-0601-4

Keywords

Navigation