Skip to main content
Log in

DFT study of the mechanism and stereoselectivity of the 1,3-dipolar cycloaddition between pyrroline-1-oxide and methyl crotonate

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A theoretical study of the regio- and stereoselectivities of the 1,3-dipolar cycloaddition reaction between methyl crotonate and pyrroline-1-oxide has been carried out using density functional theory (DFT) at the B3LYP/6-31G(d) level of theory. The reaction has been followed by performing transition state optimization, calculations of intrinsic reaction coordinate and activation energies; the molecular mechanism of the reactions is concerted and asynchronous. The regio- and exo/endo-selectivity have been explained in terms of frontier molecular orbital interactions, local and global electrophilicity and nucleophilicity indices and an analysis of the Wiberg bond indices in the transition state. The FMO analysis and DFT-based reactivity indices showed that the regioselectivity of this reaction is controlled by the HOMOdipole–LUMOdipolarophile interaction. The activation parameters indicated favoured endo approach along the meta-pathway in agreement with the experimental results.

The molecular mechanism of the 1,3-dipolar cycloaddition reaction between pyrroline-1-oxide and methyl crotonate is theoretically investigated by DFT method at the B3LYP/6-31G* level. The transition states corresponding to the possible stereoisomeric pathways along regioisomeric reaction channels were searched, localized and optimized. The cycloaddition is favored along the reaction channel with the meta-endo adduct as major diastereomer in agreement with experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Figure 1.
Figure 2.
Scheme 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. Padw A 1984 1,3-Dipolar cycloaddition chemistry, vols 1-2 (New York: Wiley Interscience)

  2. (a) Padwa A, Tomioka Y and Venkatramanan MK 1987 Tetrahedron Lett. 28 755; (b) Breuer E, Aurich H G and Nielsen 1989 Nitrones, nitronates and nitroxides (New York: Wiley); (c) Padwa A 1991 Comprehensive Organic Synthesis 4 1069; (d) Torssell K B G 1998 Nitrile oxides, nitrones and nitronates in organic synthesis; (New York: VCH); (e) Gothelf K V and Jørgensen K A 1998 Chem. Rev. 98 863; (f) Bortolini O, Mulani I, De Nin A, Maiuolo L, Nard M, Russo B and Avnet S 2011 Tetrahedron 67 563; (g) Majumder S and Bhuyan P J 2012 Tetrahedron Lett. 53 762

  3. (a) Minter A R, Brennan B B and Mapp A K 2004 J. Am. Chem. Soc. 126 10504; (b) Palmer G C, Ordy M J, Simmons R D, Strand J C, Radov L A, Mullen G, Kinsolving C R, Mitchell J T and Alle S D 1989 Antimicrob. Agents Chemother. 33 895

  4. Ding P, Miller M, Chen Y, Helquist P, Oliver A J and Wiest O 2004 Org. Lett. 6 1805

  5. Wess G, Kramer W, Schuber G, Enhsen A, Baringhaus K H, Globmik H, Müller S, Bock K, Klein H, John M, Neckermann G and Hoffmann A 1993 Tetrahedron Lett. 34 819

  6. Padwa A and Pearson W H 2002 Synthetic applications of 1,3-dipolar cycloaddition chemistry toward heterocycles and natural products (New York: Wiley & Sons)

  7. Marakchi K, Kabbaj O K and Komiha N 2002 J. Fluorine Chem. 114 81

  8. Marakchi K, Kabbaj O K, Komiha N, Jalal R and Esseffar M 2003 J. Mol. Struct. (Theochem) 620 271

  9. Liu J, Niwayama S, You Y and Houk K N 1998 J. Org. Chem. 63 1064

  10. Cossó F P, Marao I, Jiao H and Schleyer P V R 1999 J. Am. Chem. Soc. 121 6737

  11. Cadra V, Portoleś R, Murga J, Uriel S, Marco J A, Domingo L R and Zaragoza R J 2000 J. Org. Chem. 65 7000

    Google Scholar 

  12. Domingo L R 2000 Eur. J. Org. Chem. 2265

  13. Nacereddine A K, Yahia W, Bouacha S and Djerourou A 2010 Tetrahedron Lett. 51 2617

  14. Stecko S, Michel C, Milet A, Pérez S and Chmielewski M 2008 Tetrahedron: Asymmetry 19 2140

  15. Acharjee N and Banerji A 2011 Comput. Theor. Chem. 967 50

    Google Scholar 

  16. Asrof Ali Sk, Khan J H, Wazeer M I M and Perzanowski H P 1989 Tetrahedron 45 5979

  17. Frisch M J et al. Gaussian 03, Revision B.04 Gaussian: Pittsburgh PA 2003

  18. Becke A D J 1988 Chem. Phys. 38 3098

    Google Scholar 

  19. Lee C Yang and W Parr R G 1988 Phys. Rev. B37 785

  20. Hehre W J, Radom L, Schleyer P R and Pople J A 1986 Ab initio molecular orbital theory (New York: Wiley)

  21. Gonzalez C and Schlegel H B 1989 J. Chem. Phys. 90 2154

    Google Scholar 

  22. Gonzalez C and Schlegel H B 1990 J. Phys. Chem. 94 5523

    Google Scholar 

  23. (a) Reed A E, Curtiss L A and Weinhold F 1988 Chem. Rev. 88 899; (b) Reed A E Weinstock R B and Weinhold F 1985 J. Chem. Phys. 83 735

    Google Scholar 

  24. Parr R G and Yang W 1989 Density functional theory of atoms and molecules (New York: Oxford University)

  25. (a) Domingo L R, Chamorro E and Pérez P J 2088 J. Org. Chem. 73 4615; (b) Domingo L R and Picher M T 2004 Tetrahedron 60 5053

  26. (a) Domingo L R, Aurell M J, Pérez P and Contreras R 2002 J. Phys. Chem. A106 6871

  27. Geerlings P, De Prof F and Langenaeker W 2003 Chem. Rev. 103 1793

    Google Scholar 

  28. Pérez P, Domingo L R, Duque-Norna M and Chamorro E 2009 J. Mol. Struct. (Theochem) 895 86

    Google Scholar 

  29. Yang W and Mortier W J 1986 J. Am. Chem. Soc. 108 5708

    Google Scholar 

  30. Tomasi J and Persico M 1994 Chem. Rev. 94 2027

  31. Kumar Das T, Salampuria S and Banerjee M 2010 J. Mol. Struct. (Theochem) 959 22

    Google Scholar 

  32. Ohgaki E, Motoyoshiya J, Narita S, Kakurai T, Hayashi S and Hirakawa K 1990 J. Chem. Soc. Perkin Trans. 1 3109

  33. Aso M, Ojida A, Yang G, Cha O, Osawa E and Kanematsu K 1993 J. Org. Chem. 58 3960

    Google Scholar 

  34. Steck S, Michel C, Milet A, Perez S and Chmielewski M 2008 Tetrahedron: Asymmetry 19 1660

  35. Wei D, Zhu Y, Zhang C, Sun D, Zhang W and Tang M 2011 J. Mol. Catal. A: Chem. 334 108

  36. Marakchi K, Kabbaj O K, Komiha N and Chraibi M 2001 J. Fluorine Chem. 109 163

  37. Marakchi K, Kabbaj O K, Komiha N and Abou El Makarim H 2010 Phys. Chem. News 52 128

  38. Naji N, Marakchi K, Kabbaj O K, Komiha N, Chraibi M, Joffre J and Soufiaoui M 1999 J. Fluorine Chem. 94 127

  39. Sheng Y H, Fang D C, Wuc Y D, Fub X Y and Jianga Y 1999 J. Mol. Struct. (Theochem) 467 31

  40. Sustman R and Sicking W 1987 Chem. Ber. 120 1653

    Google Scholar 

  41. Sustman R and Sicking W 1987 Chem. Ber. 120 1471

    Google Scholar 

  42. Houk K N 1975 Acc. Chem. Res. 8 361

    Google Scholar 

  43. Merino P, Revuelta J, Tejero T, Chiacchio U, Rescifina A and Romeo G 2003 Tetrahedron 59 3581

  44. Pérez P, Domingo L R, Aurell M J and Conteras R 2003 Tetrahedron 59 3117

  45. (a) Domingo L R, Aurell M J, Pérez P and Contreras R 2002 Tetrahedron 58 4417; (b) Domingo L R, Asensio A and Arroyo P 2002 J. Phys. Org. Chem. 15 660; (c) Domingo L R, Arno M, Contreras R and Pérez P 2002 J. Phys. Chem. A 106 952; (d) Domingo LR 2002 Tetrahedron 58 3765; (e) Domingo L R, Aurell M J, Pérez P and Contreras R 2003 J. Org. Chem. 68 3884; (f) Domingo L R and Andres J 2003 J. Org. Chem. 68 8662; (g) Jasiński R, Koifman O I and Barański A 2011 Mendeleev Commun. 21 262; (h) Domingo L R, Pérez P and Sáez J A 2004 Tetrahedron 60 11503

  46. Simkin B Y and Sheikhet I I 1995 Quantum chemical and statistical theory of solutions. A computational approach (London: Ellis Horwood Ltd.)

  47. (a) Cances M T, Mennunci V and Tomasi J 1997 J. Chem. Phys. 107 3032; (b) Cossi M, Barone V, Cammi R and Tomasi J 1996 J. Chem. Phys. Lett. 255 327; (c) Barone V, Cossi M and Tomasi J 1998 J. Comput. Chem. 19 404

  48. Mendez F, Tamariz J and Geerlings P 1998 J. Phys. Chem. A102 6292

    Google Scholar 

  49. Froese R D J, Organ M G, Goddard J D, Stack T D P and Trost B M 1995 J. Am. Chem. Soc. 117 10931

  50. Garcia J I, Martinez-Merino V, Mayoral J A and Salvatella L 1998 J. Am. Chem. Soc. 120 2415

  51. Domingo L R 1999 J. Org. Chem. 64 3922

    Google Scholar 

  52. Wiberg K B 1968 Tetrahedron 24 1083

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Ministry of High Education of Morocco (SCH09/09) project ‘Plan d’Urgence’ and European PF7 Marie Curie PIRSES-GA-2012-317544 project CAPZEO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KHADIJA MARAKCHI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MARAKCHI, K., GHAILANE, R., KABBAJ, O.K. et al. DFT study of the mechanism and stereoselectivity of the 1,3-dipolar cycloaddition between pyrroline-1-oxide and methyl crotonate. J Chem Sci 126, 283–292 (2014). https://doi.org/10.1007/s12039-013-0563-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-013-0563-y

Keywords

Navigation