Skip to main content
Log in

Synthesis, characterization and catalytic activity of sulphonated multi-walled carbon nanotubes as heterogeneous, robust and reusable catalysts for the synthesis of bisphenolic antioxidants under solvent-free conditions

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In this study, a simple and green method has been developed for the synthesis of bisphenolic antioxidants by the reaction of 2-tert-butyl-4-methylphenol and aldehydes in the presence of sulphonated multi-walled carbon nanotubes (MWCNTs–SO3H) as heterogeneous, robust and reusable catalysts under solvent-free conditions. MWCNTs–SO3H was prepared and characterized by some microscopic and spectroscopic techniques including scanning electron microscopy, transmission electron microscopy, FT-IR spectroscopy and Raman spectroscopy. Acidity of the catalyst was measured by acid–base titration. The catalyst was reused several times without efficient loss of its activity for the preparation of bisphenolic antioxidants. In addition, high yields of the products, relatively short reaction times, being solvent-free and non-toxicity of the catalyst are other worthwhile advantages of the present method.

A simple and green method has been developed for the synthesis of bisphenolic antioxidants in the presence of MWCNTs-SO3H as heterogeneous and reusable catalysts under solvent-free conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Scheme 3

Similar content being viewed by others

References

  1. Duxbury D F 1993 Chem. Rev. 93 381

    Article  CAS  Google Scholar 

  2. Rys P and Zollinger H 1972 Fundamentals of the chemistry and application of dyes, (New Jersey: John Wiley & Sons), chapter 2

  3. Shchepinov M S and Korshun V A 2003 Chem. Soc. Rev. 32 170

    Article  CAS  Google Scholar 

  4. Greene T W and Wuts P G M 1999 Protective groups in organic synthesis, 3rd edn., (Michigan: John Wiley & Sons), chapter 3

  5. Sumoto K, Mibu N, Yokomizo K and Uyeda M 2002 Chem. Pharm. Bull. 50 298

    Article  CAS  Google Scholar 

  6. Okihama M and Kunitake J 1996 J. p. Patent 08,198,790

    Google Scholar 

  7. Denisov E T and Afanase’v B 2005 Oxidation and antioxidants in organic chemistry and biology, (USA: CRC Press), chapter 14

  8. (a) Takeshita A, Masaki S, Fujii T, Tokumaru T and Marakami A 1990 U. S. Patent, 4,912,264; (b) Senturk M, Gulcin I, Dastan A, Kufrevioglu O I and Supuran C T 2009 Bioorg. Med. Chem. 17 3207; (c) Dimitrios B 2006 Trends Food Sci. Technol. 17 505; (d) Kajiyama T and Ohkatsu Y 2002 Polym. Degrad. Stab. 75 535

  9. Winyard P G, Moody C J and Jacob C 2005 Trends Biochem. Sci. 30 453

    Article  CAS  Google Scholar 

  10. (a) Goossens R, Smet M and Dehaen W 2002 Tetrahedron Lett. 43 6605; (b) Sallivan F A V and Conn G 1957 U. S. Patent 2, 796, 445; (c) Gurvich Y A et al. 1977 U. S. Patent 1,475,973

  11. Davis A R and Sallivan F A V 1951 U. S. Patent 2,538,355

  12. Saito S, Ohwada T and Shudu K 1995 J. Am. Chem. Soc. 117 11081

    Article  CAS  Google Scholar 

  13. (a) Rode C V, Garade A A and Chikate R C 2009 Catal. Surv. Asia 13 205; (b) Shimizu K, Kontani S, Yamada S, Takahashi G, Nishiyama T and Sabsuma A 2010 Appl. Catal. A33 380

  14. (a) Jana S K, Okamoto T, Kugita T and Namba S 2005 Appl. Catal. A80 288; (b) Worakittitham K and Nuntasri D 2001 35th Congress on Science and Technology of Thailand, Thailand

  15. Mohammadpoor-Baltork I, Moghadam M, Tangestaninejad S, Mirkhani V, Mohammadiannejad-Abbasabadi K and Zolfigol M A 2011 C. R. Chimie 14 934

    Article  CAS  Google Scholar 

  16. (a) Poder S, Choudhury J, Roy U K and Roy S 2007 J. Org. Chem. 72 3100; (b) Nair V, Abhilash K G and Vidya N 2005 Org. Lett. 7 5857; (c) Esquivias J, Arrayas R G and Carretro I C 2006 Angew. Chem. Int. Ed. 45 629; (d) Li Z, Duan Z, Kang J, Wang H, Yu L and Wu Y 2008 Tetrahedron 64 1924; (e) Genoyese S, Epifano F, Pelucchini C and Curini M 2009 Eur. J. Org. Chem. 8 1132; (f) Kodomari M, Nagamatsu M, Akaike M and Aoyama T 2008 Tetrahedron Lett. 49 2537

  17. (a) Clark J H 2002 Acc. Chem. Res. 35 791; (b) Carma A 1995 Chem. Rev. 95 559; (c) Cornelis A and Laszlo P 1994 Synlett 3 155; (d) Sen S E, Smith S M and Sullivan K A 1999 Tetrahedron 55 12657

  18. (a) Iijima S 1991 Nature 56 354; (b) Wildoer J W G, Venema L, Rinzler A, Smalley R and Dekker C 1991 Nature 59 391; (c) Odom T W, Huang T J L, Kim P and Lieber C 1998 Nature 62 391; (d) Qian D, Wagner G J, Liu W K, Yu M F and Ruoff R S 2002 Appl. Mech. Rev. 55 495

  19. Zhang W, Zhang Z and Zhang Y 2011 Nanoscale Res. Lett. 6 555

    Article  Google Scholar 

  20. Derycke V, et al. 2009 C. R. Phys. 10 330

    Article  CAS  Google Scholar 

  21. Serp P, Corrias M and Kakk P 2003 Appl. Catal. A253 337

    Google Scholar 

  22. Duesberg G S, Graupner R, Downes P, Minett A, Ley L, Roth S and Nicolas N 2004 Synth. Met. 142 1236

    Article  Google Scholar 

  23. Wang Y, lqbal Z and Mitra S 2006 J. Am. Chem. Soc. 128 95

  24. Yu H, Jin Y, Li Z, Peng F and Wang H 2008 J. Solid State Chem. 181 432

    Article  CAS  Google Scholar 

  25. Adams L, Oki A, Grady T, McWhinney H and Luo Z 2009 Physica E41 723

    Article  Google Scholar 

  26. (a) Fareghi-Alamdari R, Hosseinabadi Z and Farhadi-Khouzani M 2012 J. Chem. Sci. 124 827; (b) Fareghi-Alamdari R, Golestanzadeh M, Agend F and Zekri N 2013 C. R. Chimie, doi: 10.1016/j.crci.2013.02.005

  27. Osorio A G, Bueno I C L and Bergmann C P 2008 Appl. Surf. Sci. 225 2485

    Article  Google Scholar 

  28. Peng H, Alemany L B, Margrave J L and Khabishesku V N 2003 J. Am. Chem. Soc. 125 15174

    Article  CAS  Google Scholar 

  29. Hu H, Zhao B, ltkis M E and Haddon R C 2003 J. Phys. Chem. B107 13838

  30. Jorio A, Pimenta M A, Sauza-Filho A G, Saito R, Dresselhaus G and Dresselhous M S 2003 New J. Phys. 5 139

    Article  Google Scholar 

  31. Flahaut E, Laurent C and Peigney A 2006 Carbon 43 375

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by Malek-Ashtar University of Technology (MUT). They thank Dr. Rashidi in Research Institute of Petroleum Industry (RIPI) for providing CNTs, SEM and TEM of the catalyst.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to REZA FAREGHI-ALAMDARI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

FAREGHI-ALAMDARI, R., GOLESTANZADEH, M., AGEND, F. et al. Synthesis, characterization and catalytic activity of sulphonated multi-walled carbon nanotubes as heterogeneous, robust and reusable catalysts for the synthesis of bisphenolic antioxidants under solvent-free conditions. J Chem Sci 125, 1185–1195 (2013). https://doi.org/10.1007/s12039-013-0476-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-013-0476-9

Keywords

Navigation