Skip to main content

The effects of urea, guanidinium chloride and sorbitol on porphyrin aggregation: Molecular dynamics simulation


This paper compares the inhibition effect of porphyrin aggregation in the presence of urea, guanidinium chloride (Gdn) and sorbitol by molecular dynamics simulation. It demonstrates that porphyrin aggregation increases in sorbitol, but decreases towards addition of urea and Gdn. It shows that urea, Gdn and sorbitol can have a large effect — positive or negative, depending on the concentration — on the aggregation of the porphyrin. The effect of urea, Gdn and sorbitol on porphyrin aggregation has been inferred from the effect of these solutes on the hydration layer of porphyrin. It appears that the Gdn is more suitable than urea for decreasing the hydration layer of porphyrin while several osmolites like sorbitol are known to increase hydration layer and thus might stabilize the porphyrin aggregation. Results of radial distribution function (RDF), distributed atoms or molecules around target species, indicated that the increase and exclusion of solvent around porphyrin by osmolytes and Gdn would affect significantly on porphyrin aggregation. There was a sizeable difference in potency between the Gdn and urea, with the urea being less potent to decrease hydration layer and porphyrin aggregation.

A comparative study of the effect of urea, guanidinium chloride (Gdn) and sorbitol on porphyrin aggregation was carried out by molecular dynamics simulation. The aggregation increases in sorbitol, but decreases upon addition of urea and Gdn.

This is a preview of subscription content, access via your institution.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15


  1. 1.

    Bonnett R 1995 Chem. Soc. Rev. 24 19

    Article  CAS  Google Scholar 

  2. 2.

    Collings P J, Gibbs E J, Starr T E, Vafek O, Yee C, Pomerance L A and Pasternack R F 1999 J. Phys. Chem. B 103 8474

    Article  CAS  Google Scholar 

  3. 3.

    Jori G and Spikes J D 1984 Photobiochemistry of porphyrins, K C Smith (ed.), Topics in photomedicine, New York: Plenum, 183

    Google Scholar 

  4. 4.

    Dougherty T J and Marcus S L 1992 Eur. J. Cancer 28 1734

    Article  Google Scholar 

  5. 5.

    Moan J and Berg K 1992 Photochem. Photobiol. 55 931

    Article  CAS  Google Scholar 

  6. 6.

    Grand A and Gasparro F 1993 Spectrum 6 28

    Google Scholar 

  7. 7.

    Gandini S C M, Borissevitch I E, Perussi J R, Imasato H and Tabak M 1998 Luminescence 78 53

    Article  CAS  Google Scholar 

  8. 8.

    Kano K, Minamizono H, Kitae T and Negi S 1997 J. Phys. Chem. A 101 6118

    Article  CAS  Google Scholar 

  9. 9.

    Kano K, Fukuda K, Wakami H, Nishiyabu R and Pasternack R F 2000 J. Am. Chem. Soc. 122 7494

    Article  CAS  Google Scholar 

  10. 10.

    Rahman M and Harmon H 2007 J. Phys. A 11 125

    CAS  Google Scholar 

  11. 11.

    Ghadamgahi M and Ajloo D 2011 J. Porphyr. Phthalocya. 15 240

    Article  CAS  Google Scholar 

  12. 12.

    Perepogu A K and Bangal P R 2008 J. Chem. Sci. 120 485

    Article  CAS  Google Scholar 

  13. 13.

    Pasternack R F, Fleming C, Herring S, Collings P J, dePaula J, DeCastro G and Esther J 2000 Gibbs. Biophys. J. 79 550

    Article  CAS  Google Scholar 

  14. 14.

    Alonso D O V and Daggett V 1995 J. Mol. Biol. 247 501

    Article  CAS  Google Scholar 

  15. 15.

    Caflisch A and Karplus M 1999 Struct. Fold. Des. 7 477

    Article  CAS  Google Scholar 

  16. 16.

    Laidig K E and Daggett V 1996 J. Phys. Chem. 100 5616

    Article  CAS  Google Scholar 

  17. 17.

    Agarwal M and Chakravarty C 2009 J. Chem. Sci. 121 913

    Article  CAS  Google Scholar 

  18. 18.

    Wetlaufer D, Malik S, Stoller L and Coffin R 1964 J. Am. Chem. Soc. 86 508

    Article  CAS  Google Scholar 

  19. 19.

    Frank H and Franks F 1968 J. Chem. Phys. 48 4746

    Article  CAS  Google Scholar 

  20. 20.

    Hammes G G and Schimmel P R 1967 J. Am. Chem. Soc. 89 442

    Article  CAS  Google Scholar 

  21. 21.

    Dwek R, Luz Z and Shores M 1970 J. Phys. Chem. 74 2230

    Article  Google Scholar 

  22. 22.

    Bennion B and Daggett V 2003 Proc. Natl. Acad. Sci. USA 100 5142

    Article  CAS  Google Scholar 

  23. 23.

    Auton M, Holthauzen L M F and Bolen D W 2007 Proc. Natl. Acad. Sci. USA 12 231

    Google Scholar 

  24. 24.

    OBrien E, Dima R, Brooks B and Thirumalai D 2007 J. Am. Chem. Soc. 129 7346

    Article  CAS  Google Scholar 

  25. 25.

  26. 26.

    Mason P E, Neilson G W, Dempsey C E, Barnes A C and Cruickshank J M 2003 Proc. Natl. Acad. Sci. USA 100 4557

    Article  CAS  Google Scholar 

  27. 27.

    Liu F F, Ji L, Dong X Y and Sun Y 2009 J. Phys. Chem. B 113 11320

    Article  CAS  Google Scholar 

  28. 28.

    deOliveira O V, deMoura A F and Freitas L C G 2007 J. Mol. Struct: Theochem. 808 93

    Article  Google Scholar 

  29. 29.

    Arakawa T R, Bhat R S N and Timasheff S N 1990 J. Biochem. 29 1914

    Article  CAS  Google Scholar 

  30. 30.

    Kita Y, Arakawa T, Lin T Y and Timasheff S N 1994 J. Biochem. 33 15178

    Article  CAS  Google Scholar 

  31. 31.

    Fitter J and Pohlmeier S H 2004 J. Biochem. 43 9589

    Article  CAS  Google Scholar 

  32. 32.

    Huaa L, Zhoua R, Thirumalaic D and Bernea B J 2008 Proc. Natl. Acad. Sci. USA 105 16928

    Article  Google Scholar 

Download references


The financial support of Damghan University is acknowledged.

Author information



Corresponding author

Correspondence to DAVOOD AJLOO.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

GHADAMGAHI, M., AJLOO, D. The effects of urea, guanidinium chloride and sorbitol on porphyrin aggregation: Molecular dynamics simulation. J Chem Sci 125, 627–641 (2013).

Download citation


  • Porphyrin
  • molecular dynamics simulation
  • urea
  • sorbitol
  • radial distribution function
  • aggregation