Skip to main content
Log in

Thermodynamic, kinetic and electronic structure aspects of a charge-transfer active bichromophoric organofullerene

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Our recent work on charge transfer in the electronically push–pull dimethylaminoazobenzene–fullerene C60 donor–bridge–acceptor dyad through orbital picture revealed charge displacement from the n(N = N) (non-bonding) and π (N = N) type orbitals centred on the donor part to the purely fullerene centred LUMOs and (LUMO+n) orbitals, delocalized over the entire molecule. Consequently, this investigation centres around the kinetic and thermodynamic parameters involved in the solvent polarity dependent intramolecular photo-induced electron transfer processes in the dyad, indispensable for artificial photosynthetic systems. A quasi-reversible electron transfer pathway was elucidated with electrode-specific heterogeneous electron transfer rate constants.

Solvent polarity controlled kinetic and thermodynamic parameters associated with intra-molecular photo-induced electron transfer processes in an electronically push–pull type dimethylaminoazobenzene–fullerene C60 donor–bridge–acceptor dyad are reported. A quasi-reversible electron transfer pathway is elucidated with electrode-specific heterogeneous electron transfer rate constants for the trans-dyad across the electrode/electrolyte interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Metzer R M 2003 Chem. Rev. 103 3803

    Article  Google Scholar 

  2. Guldi D M 2000 Chem. Commun. 321

  3. Williams R M, Zwier J M and Verhoeven J M 1995 J. Am. Chem. Soc. 117 4093

    Article  CAS  Google Scholar 

  4. Arakia Y and Itoa O 2008 J. Photochem. Photobiol. C: Photochem. Rev. 9 93

    Article  Google Scholar 

  5. Gayathri S S and Patnaik A 2006 Chem. Commun. 1977

  6. Prato M 1997 J. Mater. Chem. 7 1097

    Article  CAS  Google Scholar 

  7. Kadish K M and Ruoff R M Eds. 2000 Fullerenes: Chemistry, physics and technology (New York: Wiley-Interscience)

    Google Scholar 

  8. Figueira-Duarte T M, Gegout A and Nierengarten J F 2007 Chem. Commun. 109

  9. Thomas K G, Biju V, Guldi D M, Kamat P V and George M V 1999 J. Phys. Chem. A 103(50) 10755

    Article  CAS  Google Scholar 

  10. Flint D G, Kumita J R, Smart O S and Woolley G A 2002 Chem. Biol. 9 39

    Article  Google Scholar 

  11. Ikeda T and Tsutsumi O 1995 Science 268 1873

    Article  CAS  Google Scholar 

  12. Liu Z F, Hashimoto K and Fujishima K 1990 Nature 347 658

    Article  CAS  Google Scholar 

  13. Kawata S and Kawata Y 2000 Chem. Rev. 100 1777

    Article  CAS  Google Scholar 

  14. Astrand P O, Ramanujam P S, Hvilsted S, Bak K L and Sauer Stephan P A 2000 J. Am. Chem. Soc. 122 3482

    Article  Google Scholar 

  15. Kay K Y, Han K J, Yu Y J and Park Y D 2002 Tetrahedron Lett. 43 5053

    Article  CAS  Google Scholar 

  16. Oh-ishi K, Okamura J, Ishi-I T, Sano M and Shinkai S 1999 Langmuir 15 2224

    Article  CAS  Google Scholar 

  17. Shirai Y, Sasaki T, Guerrero J M, Byung-Chan Y, Hodge P and Tour J M 2008 ACS Nano 2(1) 97

    Article  CAS  Google Scholar 

  18. Schuster D I, Li K, Guldi D M, Palkar A, Echegoyen L, Stanisky C, Cross R J, Niemi M, Tkachenko N V and Lemmetyinen H 2007 J. Am. Chem. Soc. 129 15973

    Article  CAS  Google Scholar 

  19. Armaroli N, Marconi G, Echegoyen L, Bourgeois J P and Diederich F 2000 Chem-Eur. J. 6 1629

    Article  CAS  Google Scholar 

  20. Armaroli N, Accorsi G, Song F, Palkar A, Echegoyen L, Bonifazi D and Diederich F 2005 Chem. Phys. Chem. 6(4) 732

    Article  CAS  Google Scholar 

  21. Cramariuc O, Hukka T I, Rantala T T, and Lemmetyinen H 2006 J. Phys. Chem. A. 110(45) 12470

    Article  CAS  Google Scholar 

  22. D’Souza F, Chitta R, Sandanayaka A S D, Subbaiyan N K, D’Souza L, Araki Y and Ito O 2007 J. Am. Chem. Soc. 129(51) 15865

    Article  Google Scholar 

  23. Shen Y, Reparaz J S, Wagner M R, Hoffmann A, Thomsen C, Lee J O, Heeg S, Hatting B, Reich S, Saeki A, Seki S, Yoshida K, Babu S S, Möhwald H and Nakanishi T 2011 Chem. Sci. 2 2243

    Article  CAS  Google Scholar 

  24. Balzani V, Credi A and Venturi M 2008 Chem. Sus. Chem. 1 26

    CAS  Google Scholar 

  25. Kumar K S and Patnaik A 2010 J. Comput. Chem. 36 1182

    Google Scholar 

  26. Kumar K S and Patnaik A 2010 Chem. Phys. Chem. 11 3645

    Article  CAS  Google Scholar 

  27. Kumar K S and Patnaik A 2011 Chem-Eur. J. 17 5327

    Article  CAS  Google Scholar 

  28. Kumar K S and Patnaik A 2011 Langmuir 27(17) 11017

    Article  CAS  Google Scholar 

  29. Frisch M J et al. 2004 Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT

  30. Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785

    Article  CAS  Google Scholar 

  31. Becke A D 1988 Phy. Rev. A. 38 3098

    Article  CAS  Google Scholar 

  32. Vosko S H, Wilk L and Nusair M 1980 Can. J. Phys. 58 1200

    Article  CAS  Google Scholar 

  33. Stephens P J, Devlin F J, Chabalowski C F and Frisch M J 1994 J. Phys. Chem. 98 11623

    Article  CAS  Google Scholar 

  34. Casida M 1995 Recent advances in density functional methods (ed) D P Chong (Singapore: World Scientific) Vol. 1

    Google Scholar 

  35. Casida M 1996 Recent developments and applications of modern density functional theory (ed) J M Seminario (Amsterdam: Elsevier)

    Google Scholar 

  36. Amovilli C, Barone V, Cammi R, Cance E, Cossi M, Mennucci B, Pomelli C S and Tomasi 1998 J. Adv. Quantum Chem. 32 227

    Article  Google Scholar 

  37. Cossi M and Barone V 2001 J. Chem. Phys. 115 4708

    Article  CAS  Google Scholar 

  38. Aviram A and Ratner M A 1974 Chem. Phy. Lett. 29(2) 277

    Article  CAS  Google Scholar 

  39. Mujicaa V, Ratner M A and Nitzan A 2002 Chem. Phys. 281 147

    Article  Google Scholar 

  40. Majumder C, Mizuseki H and Kawazoe Y 2001 Phys. Chem. A 105(41) 9454

    Article  CAS  Google Scholar 

  41. Maggini M, Scorrano G and Prato M 1993 J. Am. Chem. Soc. 115 9798

    Article  CAS  Google Scholar 

  42. Rehm D and Weller A 1970 Isr. J. Chem. 8 259

    CAS  Google Scholar 

  43. Accorsi G and Armaroli N 2010 J. Phys. Chem. C 114(3) 1385

    Article  CAS  Google Scholar 

  44. Imahori H, Hagiwara K, Akiyama T, Aoki M, Taniguchi S, Okada T, Shirakawa M and Sakata Y 1996 Chem. Phys. Lett. 263 545

    Article  CAS  Google Scholar 

  45. Martin N, Sanchez L, Illescas B and Perez I 1998 Chem. Rev. 98(7) 2527

    Article  CAS  Google Scholar 

  46. Langa F, de la Cruz P, Espildpra E, Gonzalez-Cortes, de la Hoz A and Lopez-Arza V 2000 J. Org. Chem. 65(25) 8675

    Article  CAS  Google Scholar 

  47. Bard A J and Faulkner L R 2000 Electrochemical methods fundamentals and applications (John Wiley & sons)

  48. Nicholson R S 1965 Anal. Chem. 37(11) 1351

    Article  CAS  Google Scholar 

  49. Wang J 2000 Analytical electrochemistry 2nd edition (WILEY-VCH) p. 33

Download references

Acknowledgements

The authors thank the Department of Science and Technology (DST), New Delhi for the financial support (Grant No. SR/S2/CMP-57/2006) and Prof. P Ramamurthy, National centre for Ultrafast Processes, University of Madras for life time measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ARCHITA PATNAIK.

Rights and permissions

Reprints and permissions

About this article

Cite this article

KUMAR, K.S., PATNAIK, A. Thermodynamic, kinetic and electronic structure aspects of a charge-transfer active bichromophoric organofullerene. J Chem Sci 125, 237–246 (2013). https://doi.org/10.1007/s12039-013-0389-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-013-0389-7

Keywords

Navigation