Skip to main content
Log in

Catalytic application of two novel sandwich-type polyoxometalates in synthesis of 14-substituted-14H-dibenzo[a, j]xanthenes

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Two sandwich-type polyoxometalates K12[As2W18Cu3O68]·30H2O and K12[As2W18U3O74]·21H2O were found to be as novel efficient catalysts for one-pot synthesis of various 14-aryl or alkyl-14H-dibenzo[a, j]xanthenes. Three-component condensation reactions of β-naphthol with aromatic or aliphatic aldehydes in the presence of these catalysts were investigated. These reactions were studied under different conditions such as solvent-free media using both conventional heating and microwave irradiation and also several solvents. Results showed that the optimum reaction time and the yield were obtained when reactions were carried out under solvent-free conditions. Furthermore, the catalysts could be recovered conveniently and reused efficiently.

Three-component condensation reactions of β-naphthol with aromatic and aliphatic aldehydes in the presence of these catalysts were investigated. Results showed that the optimum reaction time and the yield were obtained when reactions was carried out under solvent-free conditions. Furthermore, the catalysts could be recovered conveniently and reused efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Pope M T 1983 Heteropoly and isopoly oxometalates (Berlin: Springer)

    Book  Google Scholar 

  2. Pope M T and Muller A 1994 Polyoxometalates: From platonic solids to anti-retroviral activity (Dordrecht, Netherlands: Kluwer)

    Book  Google Scholar 

  3. Hill C L 1998 Chem. Rev. 98 1

    Article  CAS  Google Scholar 

  4. Clemente-Juan J M and Coronado E 1999 Coord. Chem. Rev. 361 193

    Google Scholar 

  5. Pope M T and Muller A 2001 Polyoxometalate chemistry: From topology via self- assembly to applications (Dordrecht, Netherlands: Kluwer)

    Google Scholar 

  6. Wu S, Zhang W, Wang J and Ren X 2008 Catal. Lett. 123 276

    Article  CAS  Google Scholar 

  7. Wang X L, Qin C, Wang E B, Su Z M, Li Y G and Xu L 2006 Angew. Chem. Int. Ed. 45 1

    Article  CAS  Google Scholar 

  8. Lu Y, Xu Y, Li Y G, Wang E B, Xu X X and Ma Y 2006 Inorg. Chem. 5 2055

    Article  Google Scholar 

  9. An H Y, Li Y G, Xiao D R, Wang E B and Sun C Y 2006 Cryst. Growth Des. 5 1107

    Article  Google Scholar 

  10. Wu C D, Lu C Z, Zhuang H H and Huang J S 2002 J. Am. Chem. Soc. 124 3836

    Article  CAS  Google Scholar 

  11. Hagrman P J, Hagrman D and Zubieta J 1999 Angew. Chem. Int. Ed. 38 3165

    Article  CAS  Google Scholar 

  12. Zheng S T, Yuan D Q, Zhang J and Yang G Y 2007 Inorg. Chem. 46 4569

    Article  CAS  Google Scholar 

  13. Drewes D, Limanski E M and Krebs B 2005 Eur. J. Inorg. Chem. 44 1542

    Article  Google Scholar 

  14. Mbomekalle I M, Keita B, Nieerlich M, Kortz U, Berthet P and Nadjo L 2003 Inorg. Chem. 42 5143

    Google Scholar 

  15. Witte P T, Chowdhury S R, Elshof J E, Sloboda-Rozner D and Alsters R N P L 2005 Chem. Commun. 1206

  16. Santos I C M S, Gamelas J A F, Balula M S S, Simões M M Q, Neves M G P M S, Cavaleiro J A S and Cavaleiro A M V 2007 J. Mol. Catal. A: Chem. 262 41

    Article  CAS  Google Scholar 

  17. Egusquiza M G, Romanelli G P, Cabello C I, Botto I L and Thomas H J 2008 Catal. Commun. 9 45

    Article  CAS  Google Scholar 

  18. Hideo T 1981 Chem. Abstr. 95 80922b

    Google Scholar 

  19. Lambert R W, Martin J A, Merrett J H, Parkes K E B and Thomas G J 1997 Chem. Abstr. 126 212377y

    Google Scholar 

  20. Ion R M 1997 Prog. Catal. 2 55

    Google Scholar 

  21. Ion R M, Frackowiak D, Planner A and Wiktorowicz K 1998 Acta Biochim. Pol. 45 833

    CAS  Google Scholar 

  22. Banerjee A and Mukherjee A K 1981 Stain Technol. 56 83

    CAS  Google Scholar 

  23. Ahmad M, King T A, Ko D K, Cha B H and Lee J 2002 J. Phys. D. Appl. Phys. 35 1473

    Article  CAS  Google Scholar 

  24. Knight C G and Stephens T 1989 Biochem. J. 258 683

    CAS  Google Scholar 

  25. Wolf W 1893 Chem. Ber. 26 83

    Article  Google Scholar 

  26. Rosebush I K 1955 Das. Leder. 6 58

    Google Scholar 

  27. Papini P and Cimmarusti R 1947 Gazz. Chim. Ital. 77 142

    CAS  Google Scholar 

  28. Ota K and Kito T 1976 Bull. Chem. Soc. Jpn. 49 1167

    Article  CAS  Google Scholar 

  29. Khorramabadi-zad A, Kazemi Z and Amini Rudbari H 2002 J. Korean Chem. Soc. 46 541

    Article  Google Scholar 

  30. Sarma R J and Baruah J B 2005 Dyes Pigm. 64 91

    Article  CAS  Google Scholar 

  31. Khorramabadi-Zad A, Akbari S A, Shiri A and Veisi H 2005 J. Chem. Res. 277

  32. Rajitha B, Kumar B S, Reddy Y T, Reddy P N and Sreenivasulu N 2005 Tetrahedron Lett. 46 8691

    Article  CAS  Google Scholar 

  33. Ko S and Yao C F 2006 Tetrahedron Lett. 47 8827

    Article  CAS  Google Scholar 

  34. Bigdeli M A, Heravi M M and Mahdavinia G H 2007 J. Mol. Catal. A 275 25

    Article  CAS  Google Scholar 

  35. Shakibaei G I, Mirzaei P and Bazgir A 2007 Appl. Catal A 325 188

    Article  CAS  Google Scholar 

  36. Su W, Yang D, Jin C and Zhang B 2008 Tetrahedron Lett. 49 3391

    Article  CAS  Google Scholar 

  37. Dabiri M, Baghbanzadeh M, Shakourinikcheh M and Arzroomchilar E 2008 Bioorg. Med. Chem. Lett. 18 436

    Article  CAS  Google Scholar 

  38. Sharifi A, Abaee S, Tavakoli A, Mirzaei M and Zolfagharei A 2008 Synth. Commun. 38 2965

    Article  Google Scholar 

  39. Amini M M, Seyyedhamzeh M and Bazgir A 2007 Appl. Catal. A Gen. 323 242

    Article  CAS  Google Scholar 

  40. Karimi-Jaberi Z and Hashemi M M 2008 Monatsh. Chem. 139 605

    Article  CAS  Google Scholar 

  41. Kantevari S, Chary M V, Das A P R, Vuppalapati S V N and Lingaiah N 2008 Catal. Commun. 9 1575

    Article  CAS  Google Scholar 

  42. Khoshnavazi R, Eshtiagh-Hosseini H, Alizadeh M H and Pope M T 2007 Inorg. Chim. Acta 360 686

    Article  CAS  Google Scholar 

  43. Nagarapu L, Kantevari S, Mahankhali V C and Apuri S 2007 Catal. Commun. 8 117

    Google Scholar 

  44. Khosropour A R, Khodaei M M and Moghannian H 2005 Synlett. 955

  45. Kumar P S, Kumar B S, Rajitha B, Reddy P N, Sreenivasula N and Reddy Y T 2006 Arkivoc xii 46

    Article  Google Scholar 

  46. (a) Schinzer D (ed.) 1989 Selectivities in lewis acid promoted reactions (Dordrecht: Kluwer Academic Publishers); (b) Yamamoto H (ed.) 2000 Lewis acids in organic synthesis (Weinheim: Wiley-VCH); (c) Hay R W, Wilkinson G, Gillard R D and McCleverty J A 1987 Comprehensive coordination chemistry (Oxford: Pergamon Press) p. 411; (d) Santelli M 1995 Lewis acids and selectivity in organic synthesis, Boca Raton: CRC Press; (e) Wang L M, Sui Y and Zhang L 2008 Chin. J. Chem. 26 1105

  47. Ding F Q, An L T and Zou J P 2007 Chin J. Chem. 25 645

    Article  CAS  Google Scholar 

  48. (a) Wang L M, Xia J J, Qin F, Qian C T and Sun J 2003 Synthesis 8 1241; (b) Wang L M, Sheng J, Tian H and Qian C T 2004 Synth. Commun. 34 4265; (c) Wang L M, Liu J J, Tian H, Qian C T and Sun J 2005 J. Adv. Synth. Catal. 347 689; (d) Wang L M, Sheng J, Zhang L, Han J W, Fan Z Y and Tian H 2005 Tetrahedron 61 1539

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SHABNAM SHESHMANI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

SHESHMANI, S. Catalytic application of two novel sandwich-type polyoxometalates in synthesis of 14-substituted-14H-dibenzo[a, j]xanthenes. J Chem Sci 125, 345–351 (2013). https://doi.org/10.1007/s12039-013-0384-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-013-0384-z

Keywords

Navigation