PEG-SO3H as a catalyst in aqueous media: A simple, proficient and green approach for the synthesis of quinoline derivatives

Abstract

A convenient and efficient method was developed for the synthesis of quinolines, an important class of potentially bioactive compounds. The quinoline derivatives were prepared in water, an excellent solvent in terms of environmental impact and with reduced waste production. PEG-SO3H effectively catalysed the one-pot synthesis of quinolines by the condensation of o-aminoaryl ketones and carbonyl compound with high yields (75–95%). The compounds were isolated by simple filtration in a high purity form.

One-pot synthesis of quinoline derivatives have been developed by the condensation of o-aminoaryl ketones and carbonyl compounds in the presence of PEG-SO3H as green catalyst. The quinoline derivatives were prepared in water, an excellent solvent in terms of environmental impact, with high yields (75–95%).

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Scheme 3
Fig. 1

References

  1. 1

    Polshettiwar V and Varma R S 2010 Green Chem. 12 743

    Article  CAS  Google Scholar 

  2. 2

    Knight C G and Stephens T 1989 Biochem. J. 258 683

    CAS  Google Scholar 

  3. 3

    Wang X, Quan Z, Wang F, Wang M, Zhang Z and Li Z 2006 Synth. Commun. 36 451

    Article  CAS  Google Scholar 

  4. 4

    Kiasat A R and Mehrjardi M F 2008 Catal. Commun. 9 1497

    Article  CAS  Google Scholar 

  5. 5

    Hasaninejad A, Zare A and Shekouhy M 2011 Tetrahedron 67 390

    Article  CAS  Google Scholar 

  6. 6

    Wang X U 2009 Chinese Chem. Lett. 20 651

    Article  CAS  Google Scholar 

  7. 7

    (a) Li C J 2005 Chem. Rev. 105 3095; (b) Li C J and Chan T H 1997 Organic Reactions in Aqueous Media. New York: John Wiley & Sons

  8. 8

    (a) Breslow R Acc 1991 Chem. Res. 24 159; (b) Otto S and Engberts J B 1999 J. Am. Chem. Soc 121 6798

    Google Scholar 

  9. 9

    Maguire M P, Sheets K R, McVety K, Spada A P and Zilberstein A 1994 J. Med. Chem. 37 2129

    Article  CAS  Google Scholar 

  10. 10

    Larsen R D, Corley E G, King A O, Carrol J D, Davis P, Verhoeven T R, Reider P J, Labelle M, Gauthier J Y, Xiang Y B and Zamboni R J 1996 J. Org. Chem. 61 3398

    Article  CAS  Google Scholar 

  11. 11

    Chen Y L, Fang K C, Sheu J Y, Hsu S L and Tzeng C C 2001 J. Med. Chem. 44 2374

    Article  CAS  Google Scholar 

  12. 12

    Roma G, Braccio M D, Grossi G, Mattioli F and Ghia M 2000 Eur. J. Med. Chem. 35 1021

    Article  CAS  Google Scholar 

  13. 13

    Kalluraya B and Sreenivasa S F 1998 Farmaco 53 399

    Article  CAS  Google Scholar 

  14. 14

    Doube D, Blouin M, Brideau C, Chan C, Desmarais S, Eithier D, Fagueyret J P, Friesen R W, Girard M, Girard Y, Guay J, Tagari P and Young R N 1998 J. Bioorg. Med. Chem. Lett. 8 1255

    Article  Google Scholar 

  15. 15

    Ko T C, Hour M J, Lien J C, Teng C M, Lee K H, Kuo S C and Huang L 2001 J. Bioorg. Med. Chem. Lett. 11 279

    Article  CAS  Google Scholar 

  16. 16

    Ferrarini P L, Mori C, Badwneh M, Manera C, Martinelli A, Miceli M, Ramagnoli F and Saccomanni G 1997 J. Heterocycl. Chem. 34 1501

    Article  CAS  Google Scholar 

  17. 17

    Skraup Z H 1880 Monatsh. Chem. 1 316

    Article  Google Scholar 

  18. 18

    Heindel N D, Brodof T A and Kogelschatz J E 1966 J. Heterocycl. Chem. 3 222

    Article  CAS  Google Scholar 

  19. 19

    Hermecz I, Kereszturi G and Vasvari-Debreczy L 1992 Adv. Heterocycl. Chem. 54 1

    Article  Google Scholar 

  20. 20

    Pfitzinger W 1886 J. Prakt. Chem. 33 100

    Article  Google Scholar 

  21. 21

    Calaway P K and Henze H R 1939 J. Am. Chem. Soc. 61 1355

    Article  CAS  Google Scholar 

  22. 22

    Friedländer P 1882 Chem. Ber. 15 2572

    Article  Google Scholar 

  23. 23

    Fehnel E A 1966 J. Org. Chem. 31 2899

    Article  CAS  Google Scholar 

  24. 24

    Long R and Schofield K 1953 J. Chem. Soc. 3161

  25. 25

    Roberts E and Turner E E 1927 J. Chem. Soc. 1832

  26. 26

    Yadav J S, Rao P, Sreenu D, Rao R S, Kumar V N, Nagaiah K and Prasad A R 2005 Tetrahedron Lett. 46 7249

    Article  CAS  Google Scholar 

  27. 27

    Kouznetsov V V, Mendez L Y and Gomez C M M 2005 Curr. Org. Chem. 9 141

    Article  CAS  Google Scholar 

  28. 28

    Wu J, Xia H G and Gao K 2006 Org. Biomol. Chem. 4 126

    Article  CAS  Google Scholar 

  29. 29

    Lee B S, Lee J H and Ch D Y 2002 J. Org. Chem. 67 7884

    Article  CAS  Google Scholar 

  30. 30

    Arcadi A, Chiarini M, Giuseppe S D and Marinelli F 2003 Synlett 203

  31. 31

    Jiang B and Si Y G 2002 J. Org. Chem. 67 9449

    Article  CAS  Google Scholar 

  32. 32

    Song S J, Cho S J, Park D K, Kwan T W and Jenekhe S A 2003 Tetrahedron Lett. 44 255

    Article  CAS  Google Scholar 

  33. 33

    Palimkar S A, Siddiqui S A, Daniel T, Lahoti R J and Srinivasan K V 2003 J. Org. Chem. 68 9371

    Article  CAS  Google Scholar 

  34. 34

    De S K and Gibbs R A 2005 Tetrahedron Lett. 46 1647

    Article  CAS  Google Scholar 

  35. 35

    McNaughton B R and Miller B L 2003 Org. Lett. 5 4257

    Article  CAS  Google Scholar 

  36. 36

    (a) Yadav J S, Reddy B V S, Sreedhar P, SrinivasaRao R and Nagaiah K 2004 Synlett 2381; (b) Kempter G and Klug P Z 1971 Z. Chem. 11 61; (c) Narasimhulu M, Srikanth Reddy T, Chinni Mahesh K, Prabhakar P Bhujanga Rao C and Venkateswarlu Y 2006 J. Mol. Catal. A: Chem. 266 114

  37. 37

    (a) Zolfigol M A, Salehi P, Ghaderi A and Shiri M 2007 Catal. Commun. 8 1214; (b) Muscia G C, Bollini M, Carnevale J P, Bruno A M and Asis S E 2006 Tetrahedron Lett. 47 8811

  38. 38

    Karthikeyan G and Perumal P T 2004 J. Heterocycl. Chem. 41 1039

    Article  CAS  Google Scholar 

  39. 39

    De S K and Gibbs R A 2005 Tetrahedron Lett., 46 1647

  40. 40

    (a) Desai U V, Mitragotri S D, Thopate T S, Pore D M and Wadganokar P P 2006 ARKIVOK XV 198; (b) Das B, Damodar K, Chowdhury N and Kumar R A 2007 J. Mol. Catal. A. 148 274

  41. 41

    Zolfigol M A, Salehi P, Ghaderi A, Shiri M and Tanbakouchian Z 2006 J. Mol. Catal. A: Chem. 259 253

    Article  CAS  Google Scholar 

  42. 42

    Gisela C, Mariela M, Juan P and Bruno M 2006 Tetrahedron Lett. 47 8811

    Article  Google Scholar 

Download references

Acknowledgement

We acknowledge the Birjand University Research Council for support to carry out this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M A NASSERI.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

NASSERI, M.A., ALAVI, S.A. & ZAKERINASAB, B. PEG-SO3H as a catalyst in aqueous media: A simple, proficient and green approach for the synthesis of quinoline derivatives. J Chem Sci 125, 109–116 (2013). https://doi.org/10.1007/s12039-012-0353-y

Download citation

Keywords

  • Poly (ethylene glycol)-bound sulphonic acid
  • quinoline
  • aqueous media
  • green chemistry