Skip to main content
Log in

Adsorption of croconate dyes on TiO2 anatase (101) surface: A periodic DFT study to understand the binding of diketo groups#

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The adsorption of model croconate dyes on the stoichiometric TiO2 anatase (101) surface has been studied by means of periodic density functional calculations to understand the adsorption of the diketo (-COCO-) groups. Past experimental and theoretical results have shown the strong binding ability of the acid group (-COOH) to the TiO2 surface but here the theoretical studies predicts the binding strength of the diketo group to be also significant and comparable with that of the -COOH group. This may cause a competitive binding between the keto groups and the acid groups on the TiO2 surface in the case of croconate dyes and cause a reduction in the efficiency of the DSSC.

Adsorption of diketo groups of model croconates in bidentate bridging fashion on the TiO2 anatase (101) surface has binding energy of 23.2 kcal/mol and 28.7 kcal/mol which is competitive to the carboxylic acid binding. There is a decrease in charge transfer to the TiO2 due to the biradical nature of the molecules leading to lesser efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) O’Regan B and Grätzel M 1991 Nature 353 737; (b) Hagfeldt A, Boschloo G, Sun L, Kloo L and Pettersson H 2010 Chem. Rev. 110 6595

  2. Grätzel M 2005 Inorg. Chem. 44 6841

    Article  Google Scholar 

  3. Ito S, Murakami T N, Comte P, Liska P, Grätzel C, Nazeeruddin M K and Grätzel M 2008 Thin Solid Films 516 4613

    Article  CAS  Google Scholar 

  4. Goncalves L M, Bermudez V d Z, Ribeiro H A and Mendes A M 2008 Energy Environ. Sci. 1 655

    Article  CAS  Google Scholar 

  5. Kim S, Lee J K, Kang S O, Ko J, Yum J H, Fantacci S, Angelis F D, Censo D D, Nazeeruddin M K and Grätzel M 2006 J. Am. Chem. Soc. 128 16701

    Article  CAS  Google Scholar 

  6. Hara K, Kurashige M, Dan-oh Y, Kasada C, Shinpo A, Suga S, Sayama K and Arakawa H 2003 New J. Chem. 27 783

    Article  CAS  Google Scholar 

  7. Hara K, Wang Z S, Sato T, Furube A, Katoh R, Sugihara H, Dan-oh Y, Kasada C, Shinpo A and Suga S 2005 J. Phys. Chem. B 109 15476

    Article  CAS  Google Scholar 

  8. Hara K, Sayama K, Ohga Y, Shinpo A, Suga S and Arakawa H 2001 Chem. Commun. (6) 569

  9. Wang Z S, Hara K, Dan-oh Y, Kasada C, Shinpo A, Suga S, Arakawa H and Sugihara H 2005 J. Phys. Chem. B 109 3907

    Article  CAS  Google Scholar 

  10. Sayama K, Tsukagoshi S, Hara K, Ohga Y, Shinpou A, Abe Y, Suga S and Arakawa H 2002 J. Phys. Chem. B 106 1363

    Article  CAS  Google Scholar 

  11. Sayama K, Hara K, Mori N, Satsuki M, Suga S, Tsukagoshi S, Abe Y, Sugihara H and Arakawa H 2000 Chem. Commun. (13) 1173

    Google Scholar 

  12. Chen Y S, Li C, Zeng Z H, Wang W B, Wang X S and Zhang B W 2005 J. Mater. Chem. 15 1654

    Article  CAS  Google Scholar 

  13. Wang Z S, Li F Y, Huang C H, Wang L, Wei M, Jin L P and Li N Q 2000 J. Phys. Chem. B 104 9676

    Article  CAS  Google Scholar 

  14. Yao Q H, Shan L, Li F Y, Yin D D and Huang C H 2003 New J. Chem. 27 1277

    Article  CAS  Google Scholar 

  15. Odobel F, Blart E, Lagrée M, Villieras M, Boujtita H, Murr N E, Caramoric S and Bignozzi C A 2003 J. Mater. Chem. 13 502

    Article  CAS  Google Scholar 

  16. Wang Q, Campbell W M, Bonfantani E E, Jolley K W, Officer D L, Walsh P J, Gordon K, Humphry B R, Nazeeruddin M K and Grätzel M 2005 J. Phys. Chem. B 109 15397

    Article  CAS  Google Scholar 

  17. Cherian S and Wamser C C 2000 J. Phys. Chem. B 104 3624

    Article  CAS  Google Scholar 

  18. Giribabu L, Kumar C V and Reddy P Y 2006 J. Porphyr. Phthalocyan. 10 1007

    Article  CAS  Google Scholar 

  19. Campbell W M, Jolley K W, Wagner P, Wagner K, Walsh P J, Gordon K C, Schmidt M L, Nazeeruddin M K, Wang Q, Grätzel M and Officer D L 2007 J. Phys. Chem. C 111 11760

    Article  CAS  Google Scholar 

  20. Reddy P Y, Giribabu L, Lyness C, Snaith H J, Kumar C V, Chandrasekharam M, Lakshmikantam M, Yum J H, Kalyanasundaram K, Grätzel M and Nazeeruddin M K 2007 Angew Chem. Int. Ed. 46 373

    Article  CAS  Google Scholar 

  21. (a) Giribabu L, Kumar C V, Reddy V G, Reddy P Y, Rao C S, Jang S R, Yum J H, Nazeeruddin M K and Grätzel M 2007 Sol. Energy Mater. Sol. Cells 91 1611; (b) Giribabu L, Kumar C V, Reddy P Y, Yum J H, Grätzel M and Nazeeruddin M K 2009 J. Chem. Sci. 121 75

    Google Scholar 

  22. Horiuchi T, Miura H, Sumioka K and Uchida S 2004 J. Am. Chem. Soc. 126 12218

    Article  CAS  Google Scholar 

  23. Schmidt M L, Bach U, Humphry B R, Horiuchi T, Miura H, Ito S, Uchida S and Grätzel M 2005 Adv. Mater. 17 813

    Article  Google Scholar 

  24. Matsui M, Mase H, Jin J Y, Funabiki K, Yoshida T and Minoura H 2006 Dyes Pigm. 70 48

    Article  CAS  Google Scholar 

  25. (a) Burke A, Schmidt M L, Ito S and Grätzel M 2007 Chem. Commun. 234; (b) Alex S, Santhosh U and Das S 2005 J. Photochem. Photobiol. A 172 63; (c) Snaith H, Humphry-Baker R, Chen P, Cesar I, Zakeeruddin S and Grätzel M 2008 Nanotechnology 19 424003

  26. Li C, Wang W, Wang X, Zhang B and Cao Y 2005 Chem. Lett. 34 554

    Article  CAS  Google Scholar 

  27. Takechi K, Kamat P V, Avirah R R, Jyothish K and Ramaiah D 2008 Chem. Mater. 20 265

    Article  CAS  Google Scholar 

  28. Fabian J 1992 Chem. Rev. 92 1197

    Article  CAS  Google Scholar 

  29. Fabian J and Zahradnik R 1989 Angew. Chem. Int. Ed. 28 677

    Article  Google Scholar 

  30. Yesudas K and Bhanuprakash K 2007 J. Phys. Chem. A 111 1943

    Article  CAS  Google Scholar 

  31. Prabhakar Ch, Yesudas K, Bhanuprakash K, Jayathirtha Rao V, Santosh Kumar R S and Rao D N 2008 J. Phys. Chem. C 112 13272

    Article  CAS  Google Scholar 

  32. Serpone N and Sahyun M R V 1994 J. Phys. Chem. 98 734

    Article  CAS  Google Scholar 

  33. Soper S A and Mattingly Q L 1994 J. Am. Chem. Soc. 116 3744

    Article  CAS  Google Scholar 

  34. Chen S Y, Horng M L and Quitevis E L 1989 J. Phys. Chem. 93 3683

    Article  CAS  Google Scholar 

  35. Tani T, Suzumoto T, Kemnitz K and Yoshihara K 1992 J. Phys. Chem. 96 2778

    Article  CAS  Google Scholar 

  36. Noukakis D, Van der A M, Toppet S and De Schryver F C 1995 J. Phys. Chem. 99 11860

    Article  CAS  Google Scholar 

  37. Chibisov A K, Zakharova G V, Goerner H, Sogulyaev Y A, Mushkalo I L and Tolmachev A I 1995 J. Phys. Chem. 99 886

    Article  CAS  Google Scholar 

  38. Trosken B, Wiilig F, Schwarzburg K, Ehret A and Spitler M 1995 J. Phys. Chem. 99 5152

    Article  Google Scholar 

  39. Yonezawa Y and Ishizawa H 1996 J. Lumin. 69 141

    Article  CAS  Google Scholar 

  40. Arun K T, Epe B and Ramaiah D 2002 J. Phys. Chem. B 106 11622

    Article  CAS  Google Scholar 

  41. Kamat P V 2007 J. Phys. Chem. C 111 2834

    Article  CAS  Google Scholar 

  42. Geiger T, Kuster S, Yum J H, Moon S J, Nazeeruddin M K, Gratzel M and Nuesch F 2009 Adv. Funct. Mater. 19 2720

    Article  CAS  Google Scholar 

  43. Burke A, Ito S, Snaith H, Bach U, Kwiatkowski J and Gratzel M 2008 Nano Lett. 8 977

    Article  CAS  Google Scholar 

  44. Yum J H, Walter P, Huber S, Rentsch D, Geiger T, Nuesch F, Angelis F D, Gratzel M and Nazeeruddin M K 2007 J. Am. Chem. Soc. 129 10320

    Article  CAS  Google Scholar 

  45. Choi H, Kim J J, Song K, Ko J, Nazeeruddin M K and Grätzel M 2010 J. Mater. Chem. 20 3280

    Article  CAS  Google Scholar 

  46. Srinivas K, Yesudas K, Bhanuprakash K, Jayathirtha Rao V and Giribabu L 2009 J. Phys. Chem. C 113 20117

    Article  CAS  Google Scholar 

  47. Robertson N 2006 Angew. Chem. Int. Ed. 45 2338

    Article  CAS  Google Scholar 

  48. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A 2004 Gaussian 03, revision D.01 (Wallingford, CT: Gaussian, Inc.)

  49. Wirz J 1984 Pure Appl. Chem. 56 1289

    Article  CAS  Google Scholar 

  50. Dohnert D and Koutecky J 1980 J. Am. Chem. Soc. 102 1790

    Google Scholar 

  51. Nakano M, Nitta T, Yamaguchi K, Champagne B and Botek E 2004 J. Phys. Chem. A 108 4105

    Article  CAS  Google Scholar 

  52. (a) Bachler V, Olbrich G, Neese F and Wieghardt K 2002 Inorg. Chem. 41 4179; (b) Adamo C, Barone V, Bencini A, Totti F and Ciofini I 1999 Inorg. Chem. 38 1996

  53. (a) Puyad A.L, Prabhakar Ch, Yesudas K, Bhanuprakash K and Rao V J 2009 J. Mol. Struct. (Theochem) 904 1; (b) Prabhakar Ch, Krishna Chaitanya G, Sitha S, Bhanuprakash K and Rao V J 2005 J. Phys. Chem. A 109 2614; (c) Prabhakar Ch, Yesudas K, Krishna Chaitanya G, Sitha S, Bhanuprakash K and Rao V J 2005 J. Phys. Chem. A 109 8604; (d) Yesudas K, Krishna Chaitanya G, Prabhakar Ch, Bhanuprakash K and Rao V J 2006 J. Phys. Chem. A 110 11717; (e) Srinivas K, Prabhakar Ch, Lavanya Devi C, Yesudas K, Bhanuprakash K and Rao V J 2007 J. Phys. Chem. A 111 3378; (f) Thomas A, Srinivas K, Prabhakar Ch, Bhanuprakash K and Rao V J 2008 Chem. Phys. Lett. 454 36

  54. Kole J and Michl J 1973 J. Am. Chem. Soc. 95 7391

    Article  Google Scholar 

  55. (a) Foresman F B, Gordon M H, Pople J A and Frisch M J 1992 J. Phys. Chem. 96 135; (b) Gordon M H, Rico R J, Oumi M and Lee T 1994 J. Chem. Phys. Lett. 21 219; (c) Bacon A D and Zerner M C 1979 Theory Chim. Acta. 53 21; (d) Anderson W P, Edwards W D and Zerner M C 1986 Inorg. Chem. 25 2728

  56. (a) Nakajima T and Nakatsuji H 1997 Chem. Phys. Lett. 280 79; (b) Wan J, Ehara M, Hada M and Nakatsuji H 2000 J. Chem. Phys. 113 5245; (c) Nakajima T and Nakatsuji H 1999 Chem. Phys. Lett. 300 1; (d) Wan J, Hada M, Ehara M and Nakatsuji H 2001 J. Chem. Phys. 114 842; (e) Nakatsuji H 1992 Acta Chim. Hung. Models Chem. 129 719; (f) Nakatsuji H 1997, in Computational chemistry – Reviews of current trends. J. Leszczynski (ed.) (Singapore: World Scientific) Vol. 2

  57. Baroni S, Dal Corso A, Gironcoli S, Giannozzi P, Cavazzoni C, Ballbio G, Scandolo S, Chiarotti G, Focher P, Pasquarello A, Laasonen K, Trave A, Car R, Marzari N and Kokalj A, http://www.pwscf.org

  58. Vanderbilt D 1990 Phys. Rev. B 41 7892

    Article  Google Scholar 

  59. Perdew J P and Yang Y 1992 Phys. Rev. B 45 13244

    Article  Google Scholar 

  60. Monkhorst H and Pack 1967 J. Phys. Rev. B 13 5188

    Article  Google Scholar 

  61. Fletcher R 1980 Practical methods of optimization (Wiley: New York) Vol. 1

    Google Scholar 

  62. (a) Koide T, Furukawa K, Shinokubo H, Shin J Y, Kim S K, Kim D and Osuka A 2010 J. Am. Chem. Soc. 132 7246; (b) Ichino T, Villano S M, Gianola A J, Goebbert D J, Velarde L, Sanov A, Blanksby S J, Zhou X, Hrovat D A, Borden W T and Lineberger W C 2009 Angew. Chem. Int. Ed. 48 8509

    Google Scholar 

  63. (a) Schalleya C H, Stephen B, Jeremy N H, Detlef S, Waltraud Z, John H B and Schwarz H 1998 Eur. J. Org. Chem. 987; (b) Hrovat D A, Murcko M A, Lahti P M and Borden W T 1998 J. Chem. Soc. Perkin Trans. 2 1037

  64. Hirano T, Kumagai T, Miyashi T, Akiyama K and Ikegami Y 1991 J. Org. Chem. 56 1907

    Article  CAS  Google Scholar 

  65. (a) Bauernschmitt R and Ahlrichs R 1996 J. Chem. Phys. 104 9047; (b) Bauernschmitt R and Ahlrichs R 1996 Chem. Phys. Lett. 256 454

    Google Scholar 

  66. (a) Makoto E, Kawasumi S, Kagawa S and Seiyama T 1978 Bull. Chem. Soc. Jpn. 51 3144; (b) Chang J G, Wang J and Lin M C 2007 J. Phys. Chem. A 111 6746

  67. (a) Raghunath P and Lin M C 2008 J. Phys. Chem. C 112 8276; (b) Vittadini A, Selloni A, Rotzinger F P and Grätzel M 1998 Phys. Rev. Lett. 81 2954

  68. Olkhov R V and Bally T, MoPlot V.1.85, http://www-chem.unifr.ch/tb/moplot/moplot.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K BHANUPRAKASH.

Additional information

#Dedicated to Prof. N Sathyamurthy on his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

PUYAD, A.L., KUMAR, C.R. & BHANUPRAKASH, K. Adsorption of croconate dyes on TiO2 anatase (101) surface: A periodic DFT study to understand the binding of diketo groups# . J Chem Sci 124, 301–310 (2012). https://doi.org/10.1007/s12039-012-0229-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-012-0229-1

Keywords

Navigation