Skip to main content

Hydrogen bond dynamics and vibrational spectral diffusion in aqueous solution of acetone: A first principles molecular dynamics study#

Abstract

We present an ab initio molecular dynamics study of vibrational spectral diffusion and hydrogen bond dynamics in aqueous solution of acetone at room temperature. It is found that the frequencies of OD bonds in the acetone hydration shell have a higher stretch frequency than those in the bulk water. Also, on average, the frequencies of hydration shell OD modes are found to increase with increase in the acetone–water hydrogen bond distance. The vibrational spectral diffusion of the hydration shell water molecules reveals three time scales: A short-time relaxation (~80fs) corresponding to the dynamics of intact acetone–water hydrogen bonds, a slower relaxation (~1.3ps) corresponding to the lifetime of acetone–water hydrogen bonds and another longer time constant (~12ps) corresponding to the escape dynamics of water from the solute hydration shell. The present first principles results are compared with those of available experiments and classical simulations.

Vibrational spectral diffusion and hydrogen bond dynamics in aqueous solution containing an acetone molecule are studied through ab initio molecular dynamics simulations and time series analysis. The present theoretical results are also compared with those of available experiments and classical simulations.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Löwen B and Schulz S 1995 Thermochim. Acta 262 69

    Article  Google Scholar 

  2. 2.

    Matteoli E and Lepori L 1984 J. Chem. Phys. 80 2856

    Article  CAS  Google Scholar 

  3. 3.

    Blandamer M J, Blundell N J, Burgess J, Cowles H J and Horn I M 1990 J. Chem. Soc., Faraday Trans. 86 283

    Article  CAS  Google Scholar 

  4. 4.

    Blandamer M J, Burgess J, Cooney A, Cowles H J, Horn I M, Martin K J, Morcom K W and Warrick P Jr 1990 J. Chem. Soc., Faraday Trans. 86 2209

    Article  CAS  Google Scholar 

  5. 5.

    Marcus Y 2001 Monatsh. Chem. 132 1387

    Article  CAS  Google Scholar 

  6. 6.

    Landoldt-Bönstein 1977 Numerical data and functional relationships in science and technology (New Series, Group IV, Vol. 1, Springer-Verlag, New York)

  7. 7.

    McCall D W and Douglass D C 1967 J. Phys. Chem. 71 987

    Article  CAS  Google Scholar 

  8. 8.

    Goldammer E T and Hertz H G 1970 J. Phys. Chem. 74 3734

    Article  Google Scholar 

  9. 9.

    Venables D S and Schmuttenmaer C A 2000 J. Chem. Phys. 113 11222

    Article  CAS  Google Scholar 

  10. 10.

    (a) Max J J and Chapados C 2003 J. Chem. Phys. 119 5632; (b) 2004 J. Chem. Phys. 120 6625

  11. 11.

    Ferrario M, Haughney M, McDonald I R and Klein M L 1990 J. Chem. Phys. 93 5156

    Article  CAS  Google Scholar 

  12. 12.

    Freitas L C G, Cordeiro J M M and Garbujo F L L 1999 J. Mol. Liq. 79 1

    Article  CAS  Google Scholar 

  13. 13.

    Perera A and Sokolic F 2004 J. Chem. Phys. 121 11272

    Article  CAS  Google Scholar 

  14. 14.

    Weerasinghe S and Smith P E 2003 J. Chem. Phys. 118 10663

    Article  CAS  Google Scholar 

  15. 15.

    Liang W, Li H, Lei Y and Han S 2004 J. Mol. Struct. 686 109

    CAS  Google Scholar 

  16. 16.

    Gillijamse J J, Lock A J and Bakker H J 2005 Proc. Natl. Acad. Sci. USA 102 3202

    Article  Google Scholar 

  17. 17.

    Gupta R and Chandra A 2007 J. Chem. Phys. 127 024503

    Article  Google Scholar 

  18. 18.

    Bernasconi L and Sprik M 2003 J. Chem. Phys. 119 12417

    Article  CAS  Google Scholar 

  19. 19.

    Neugebauer J, Louwerse M J, Baerends E J and Wesolowski T A 2005 J. Chem. Phys. 122 094115

    Article  Google Scholar 

  20. 20.

    Crescenzi O, Pavone M, Angeles F and Barone V 2005 J. Phys. Chem. B 109 445

    Article  CAS  Google Scholar 

  21. 21.

    Pavone M, Crescenzi O, Morelli G, Rega N and Barone V 2006 Theor. Chem. Acc. 116 456

    Article  CAS  Google Scholar 

  22. 22.

    Thompson M 1996 J. Phys. Chem. 100 14492

    Article  CAS  Google Scholar 

  23. 23.

    Rohrig U F, Frank I, Hutter J, Laio A, VandeVondele J and Rothlisberger U 2003 Chem. Phys. Chem 4 1177

    Article  Google Scholar 

  24. 24.

    Aidas K, Kongsted J, Osted A, Mikkelsen K and Christiansen O 2005 J. Phys. Chem. A 109 8001

    Article  CAS  Google Scholar 

  25. 25.

    Car R and Parrinello M 1985 Phys. Rev. Lett. 55 2471

    Article  CAS  Google Scholar 

  26. 26.

    Marx D and Hutter J 2000 in Modern methods and algorithms of quantum chemistry (ed) J Grotendorst (NIC, FZ Jülich, ADDRESS) for downloads see <www.theochem.ruhr-uni-bochum.de/go/cprev.html>

  27. 27.

    Fuentes M, Guttorp P and Sampson P D 2007 in Statistical methods for spatio-temporal systems, chapter 3 (eds) B Finkenstadt, L Held and V IshamChapman (Boca Raton: Hall/CRC)

    Google Scholar 

  28. 28.

    Vela-Arevalo L V and Wiggins S 2001 Int. J. Bifur. Chaos 11 1359

    Article  CAS  Google Scholar 

  29. 29.

    Semparithi A and Keshavamurthy S 2003 Phys. Chem. Chem. Phys. 5 5051

    Article  CAS  Google Scholar 

  30. 30.

    Hutter J, Alavi A, Deutsch T, Bernasconi M, Goedecker S, Marx D, Tuckerman M and Parrinello M CPMD program, mPI für Festkörperforschung and IBM Zurich Research Laboratory

  31. 31.

    Troullier N and Martins J L 1991 Phys. Rev. B 43 1993

    Article  CAS  Google Scholar 

  32. 32.

    (a) Becke A D 1988 Phys. Rev. A 38 3098; (b) Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785

  33. 33.

    Laasonen K, Sprik M, Parrinello M and Car R 1993 J. Chem. Phys. 99 9080

    Article  CAS  Google Scholar 

  34. 34.

    (a) Silvestrelli P L and M. Parrinello 1999 Phys. Rev. Lett. 82 3308; (b) 1999 J. Chem. Phys. 111 3572; (c) Silvestrelli P L, Bernasconi M and Parrinello M 1997 Chem. Phys. Lett. 277 478

    Google Scholar 

  35. 35.

    (a) Krack M, Gambirasio A and Parrinello M 2002 J. Chem. Phys. 117 9409; (b) Chen B, Ivanov I, Klein M L and Parrinello M 2003 Phys. Rev. Lett. 91 215503

  36. 36.

    Izvekov S and Voth G 2002 J. Chem. Phys. 116 10372

    Article  CAS  Google Scholar 

  37. 37.

    Sprik M, Hutter J and Parrinello M 1995 J. Chem. Phys. 105 1142

    Article  Google Scholar 

  38. 38.

    VandeVondele J, Mohamed F, Krack M, Hutter J, Sprik M and Parrinello M 2005 J. Chem. Phys. 122 014515

    Article  Google Scholar 

  39. 39.

    (a) Mallik B S, Semparithi A and Chandra A 2008 J. Phys. Chem. A 112 5104; (b) Mallik B S and Chandra A 2008 J. Mol. Liq. 143 31

  40. 40.

    (a) Boero M, Terakura K, Ikeshoji T, Liew C C and Parrinello M 2000 Phys. Rev. Lett. 85 3245; (b) 2001 J. Chem. Phys. 115 2219; (c) Boero M 2007 J. Phys. Chem. A 111 12248

  41. 41.

    Mallik B S and Chandra A 2008 J. Phys. Chem. A 112 13518

    Article  CAS  Google Scholar 

  42. 42.

    (a) Marx D, Tuckerman M E, Hutter J and Parrinello M 1999 Nature 397 601; (b) Tuckerman M E, Marx D and Parrinello M 2002 Nature 417 925

  43. 43.

    Kirchner B, Stubbs J and Marx D 2002 Phys. Rev. Lett. 89 215901

    Article  Google Scholar 

  44. 44.

    Heuft J M and Meijer E J 2006 Phys. Chem. Chem. Phys. 8 3116

    Article  CAS  Google Scholar 

  45. 45.

    Cavallaria M, Cavazzoni C and Ferrario M 2004 Mol. Phys. 102 959

    Article  Google Scholar 

  46. 46.

    Ikeda T, Hirata M and Kimura T 2003 J. Chem. Phys. 119 12386

    Article  CAS  Google Scholar 

  47. 47.

    Leung K and Rempe S B 2004 J. Am. Chem. Soc. 126 344

    Article  CAS  Google Scholar 

  48. 48.

    (a) Ramaniah L M, Barnasconi M and Parrinello M 1999 J. Chem. Phys. 111 1587; (b) Lyubartsev A P, Laaksonen K and Laaksonen A 2001 J. Chem. Phys. 114 3120

    Google Scholar 

  49. 49.

    Gaigeot M P and Sprik M 2004 J. Phys. Chem. B 108 7458

    Article  CAS  Google Scholar 

  50. 50.

    Mallik B S, Semparithi A and Chandra A 2008 J. Chem. Phys. 129 194512

    Article  Google Scholar 

  51. 51.

    Tsuchida E, Kanada Y and Tsukada M 1999 Chem. Phys. Lett. 311 236

    Article  CAS  Google Scholar 

  52. 52.

    Paglial M, Cardini G, Righini R and Schettino V 2003 J. Chem. Phys. 119 6655

    Article  Google Scholar 

  53. 53.

    Morrone J A and Tuckerman M E 2002 J. Chem. Phys. 117 4403

    Article  CAS  Google Scholar 

  54. 54.

    Diraison M, Martyna G J and Tuckerman M E 1999 J. Chem. Phys. 111 1096

    Article  CAS  Google Scholar 

  55. 55.

    Boese D, Chandra A, Martin J M L and Marx D 2003 J. Chem. Phys. 119 5965

    Article  CAS  Google Scholar 

  56. 56.

    Morrone J A, Haslinger K E and Tuckerman M E 2006 J. Phys. Chem. B 110 3712

    Article  CAS  Google Scholar 

  57. 57.

    (a) Boero M, Ikeshoji T, Liew C C, Terakura K and Parrinello M 2004 J. Am. Chem. Soc. 126 6280; (b) Mundy C J, Hutter J and Parrinello M 2000 J. Am. Chem. Soc. 122 4837

  58. 58.

    (a) Tuckerman M, Chandra A and Marx D 2006 Acc. Chem. Res. 39 151; (b) Chandra A, Tuckerman M and Marx D 2007 Phys. Rev. Lett. 99 145901

  59. 59.

    Marx D, Chandra A, Tuckerman M 2010 Chem. Rev. 110 2174

    Article  CAS  Google Scholar 

  60. 60.

    Berendsen H J C, Grigera J R and Straatsma T P 1987 J. Phys. Chem. 91 6269

    Article  CAS  Google Scholar 

  61. 61.

    Jorgensen W L, Maxwell D and Rives J T 1996 J. Am. Chem. Soc. 118 11225

    Article  CAS  Google Scholar 

  62. 62.

    Matlab, version-R2007a, The MathWorks, Inc., USA (http://www.mathworks.com)

  63. 63.

    (a) Lawrence C P and Skinner J L 2003 J. Chem. Phys. 118 264; (b) Chem. Phys. Lett. 369 472 2003

    Google Scholar 

  64. 64.

    Corcelli S A, Lawrence C P and Skinner J L 2004 J. Chem. Phys. 120 8107

    Article  CAS  Google Scholar 

  65. 65.

    Rey R, Moller K B and Hynes J T 2002 J. Phys. Chem. A 106 11993

    Article  CAS  Google Scholar 

  66. 66.

    Moller K B, Rey R, Hynes J T 2004 J. Phys. Chem. A 108 1275

    Article  CAS  Google Scholar 

  67. 67.

    Lee H S and Tuckerman M E 2007 J. Chem. Phys. 126 164501

    Article  Google Scholar 

  68. 68.

    Rapaport D 1983 Mol. Phys. 50 1151

    Article  CAS  Google Scholar 

  69. 69.

    (a) Chandra A 2000 Phys. Rev. Lett. 85 768; (b) Chowdhuri S and Chandra A 2002 Phys. Rev. E 66 041203; (c) Paul S and Chandra A 2004 Chem. Phys. Lett. 386 218

  70. 70.

    Balasubramanian S, Pal S and Bagchi B 2002 Phys. Rev. Lett. 89 115505

    Article  Google Scholar 

  71. 71.

    Luzar A and Chandler D 1996 Nature 379 53

    Article  Google Scholar 

  72. 72.

    Luzar A 2000 J. Chem. Phys. 113 10663

    Article  CAS  Google Scholar 

  73. 73.

    Xu H and Berne B J 2001 J. Phys. Chem. B 105 11929

    Article  CAS  Google Scholar 

  74. 74.

    Xu H, Stern H A and Berne B J 2002 J. Phys. Chem. B 106 2054

    Article  CAS  Google Scholar 

  75. 75.

    Schreiner E, Nicolini C, Ludolph B, Ravindra R, Otte N, Kohlmeyer A, Rousseau R, Winter R and Marx D 2004 Phys. Rev. Lett. 92 148101

    Article  Google Scholar 

  76. 76.

    (a) Chowdhuri S and Chandra A 2006 J. Phys. Chem. B 110 9674; (b) Chandra A and Chowdhuri S 2002 J. Phys. Chem. B 106 6779

  77. 77.

    Chandra A 2003 J. Phys. Chem. B 107 3899

    Article  CAS  Google Scholar 

  78. 78.

    Impey R W, Madden P A, McDonald I R 1983 J. Phys. Chem. 87 5071

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to AMALENDU CHANDRA.

Additional information

#Dedicated to Prof. N Sathyamurthy on his 60th birthday

Rights and permissions

Reprints and Permissions

About this article

Cite this article

MALLIK, B.S., CHANDRA, A. Hydrogen bond dynamics and vibrational spectral diffusion in aqueous solution of acetone: A first principles molecular dynamics study# . J Chem Sci 124, 215–221 (2012). https://doi.org/10.1007/s12039-012-0219-3

Download citation

Keywords

  • Ab initio molecular dynamics
  • spectral diffusion
  • acetone–water
  • hydrogen bond dynamics