Skip to main content
Log in

Metal selective co-ordinative self-assembly of π-donors

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Metal selective co-ordinative nanostructures were constructed by the supramolecular co-assembly of pyridine appended TTF (TTF-Py) and pyrene (PYR-Py) derivatives in appropriate solvent composition mixtures with metal ions. Microscopic analyses show that TTF-Py shows distinctive morphology with either of these metal ions, forming I-D tapes with 1:1 Pb2 +  complex and 2-D sheets with 1:2 Zn2 +  complex. A rationale has been provided from molecular level packing for such hierarchical changes. In case of Cu2 + , we have observed an anomalous binding of metal ion to the core sulphur groups causing redox changes in the TTF core. PYR-Py on the other hand is shown to be a fluorescent sensor for Pb2 + , Zn2 + , Hg2 +  and Ag + . With different fluorescent response for metal complexes, we essentially obtained similar 1-D assemblies suggesting similar binding modes for all of them. Supramolecular approach through which morphology of an electron donor moiety can be engineered by metal ions can be a new tool in nanoelectronics.

Metal selective self-assembly of pyridine appended donors moieties of TTF and Pyrene, to various nanostructures is presented. The supramolecular morphology is greatly dependent on the metal ion and a direct correlation of binding mode with the nanostructures is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) Ajayaghosh A, George S J and Schenning A P H J 2005 in Topics in current chemistry, vol. 258, (Ed: F Würthner), Springer, pp. 83; (b) Babu S S, Kartha K K and Ajayaghosh A 2010 J. Phys. Chem. Lett. 1 3413; (c) Ajayaghosh A, Praveen V K 2007 Acc. Chem. Res. 40 644

  2. (a) Brunsveld L, Folmer B J B, Meijer E W and Sijbesma R P 2001 Chem. Rev. 101 4071; (b) Whitesides G M, Mathias J P and Seto C T 1991 Science 254 1312; (c) Prins L J, Reinhoudt D N and Timmerman P 2001 Angew. Chem., Int. Ed. 40 2382; (d) Shimizu T, Masuda M and Minamikawa H 2005 Chem. Rev. 105 1401; (e) Yan Q, Yiyang L, Yijie W, Zhiyi Y, Jun L, Jiang Z, Yun Y and Jianbin H 2009 Nano Lett. 9 4500

  3. (a) Schoonbeek F S, van Esch J, Wegewijs B, Rep D B A, de Haas M P, Klapwijk T M, Kellogg R M and Feringa B L 1999 Angew. Chem., Int. Ed. 38 1393; (b) Swager T M, Gil C J and Wrighton M S 1995 J. Phys. Chem. 99 4886

  4. (a) George S J and Ajayaghosh A 2001 J. Am. Chem. Soc. 123 5148; (b) George S J and Ajayaghosh A 2005 Chem. Eur. J. 11 3217; (c) Babu P, Sangeetha N M, Vijaykumar P, Maitra U, Rissanen K and Raju A R 2003 Chem. Eur. J. 9 1922; (d) Hoeben F J M, Jonkheijm P, Meijer E W and Schenning A P H J 2005 Chem. Rev. 105 1491; (e) Samanta S K, Pal A and Bhattacharya S 2009 Langmuir 25 8567; (f) Bhattacharya S and Samanta S K 2009 Langmuir 25 8378; (g) Prasanthkumar S, Saeki A, Seki S and Ajayaghosh A 2010 J. Am. Chem. Soc. 132 8866; (h) Prasanthkumar S, Gopal A and Ajayaghosh A 2010 J. Am. Chem. Soc. 132 13206; (i) Ajayaghosh A, Varghese R, Praveen V K and Mahesh S 2006 Angew. Chem. Int. Ed. 45 3261; (j) Yagai S, Mahesh S, Kikkawa Y, Unoike K, Karatsu T, Kitamura A and Ajayaghosh A 2008 Angew. Chem. 120 4769

  5. (a) Oh M and Mirkin C A 2005 Nature 438 651; (b) Sun X, Dong S and Wang E 2005 J. Am. Chem. Soc. 127 13102; (c) Oh M and Mirkin C A 2006 Angew. Chem., Int. Ed. 118 5618; (d) Maeda H, Hasegawa M, Hashimoto T, Kakimoto T, Nishio S and Nakanishi T 2006 J. Am. Chem. Soc. 128 10024

  6. (a) Würthner F, Stepanenko V and Sautter A 2006 Angew. Chem., Int. Ed. 118 1973; (b) Jeon Y-M, Heo J and Mirkin C A 2007 J. Am. Chem. Soc. 129 7480

    Google Scholar 

  7. (a) Kim Y, Mayer M F and Zimmerman S C 2003 Angew. Chem., Int. Ed. 115 1153; (b) Liu B, Qian D-J, Chen M, Wakayama T, Nakamura C and Miyake J 2006 Chem. Commun. 30 3175

  8. Kim H-J, Lee E, Park H-S, Lee M 2007 J. Am. Chem. Soc. 129 10994

    Article  CAS  Google Scholar 

  9. (a) Geng Y, Wang X-J, Chen B, Xue H, Zhao Y-P, Lee S, Tung C-H and Wu L-Z 2009 Chem. Eur. J. 15 51241; (b) Xue H, Tang X-J, Wu L-Z, Zhang L-P and Tung C-H 2005 J. Org. Chem. 70 9727; (c) Ajayaghosh A, Chithra P, Varghese R 2007 Angew. Chem., Int. Ed. 46 230; (d) Ajayaghosh A, Chithra P, Varghese R and Divya K P 2008 Chem. Commun. 8 969; (e) Sreejith S, Divya K P and Ajayaghosh A 2008 Chem. Commun. 25 2903; (f) Chithra P, Varghese R, Divya K P and Ajayaghosh A 2008 Chem. Asian J. 3 1365

  10. (a) Wang J–Y, Yan J, Ding L, Ma Y and Pei J 2009 Adv. Funct. Mater. 19 1746; (b) Kitamura T, Nakaso S, Mizoshita N, Tochigi Y, Shimomura T, Moriyama M and Kato T 2005 J. Am. Chem. Soc. 127 14769; (c) Luis Puigmarti J, Laukhin V, del Pino Á P, Gancendo J V, Rovira C, Laukhina E and Amabilino D B 2007 Angew. Chem. Int. Ed. 46 238; (d) Danila I, Riobé F, Luis J P–, del Pino Á P, Wallis J D, Amabilino D B and Avarvari N 2009 J. Mater. Chem. 19 4495; (e) Tatewaki Y, Hatanaka T, Tsunashima R, Nakamura T, Kimura M and Shirai H 2009 Chem. Asian J. 4 1474; (f) Mukhopadhyay P, Iwashita Y, Shirakawa M, Kawano S–i, Fujita N and Shinkai S 2006 Angew. Chem. Int. Ed. 45 1592; (g) Xiao J, Yin Z, Li H, Zhang Q, Boey F, Zhang H and Zhang Q J 2010 J. Am. Chem. Soc. 132 6926

  11. (a) Kitahara T, Shirakawa M, Kawano S, Beginn U, Fujita N and Shinkai S 2005 J. Am. Chem. Soc. 127 14980; (b) Wang C, Zhang D and Zhu D 2005 J. Am. Chem. Soc. 127 16372

  12. (a) Wang C, Guo Y, Wang Y, Xu H, Wang R and Zhang X 2009 Angew. Chem. Int. Ed. 48 8962; (b) Wang C, Yin S, Chen S, Xu H, Wang Z and Zhang X 2008 Angew. Chem. Int. Ed. 47 9049; (c) Das R K, Kandanelli R, Linnanto J, Bose K and Maitra U 2010 Langmuir 26 16141

  13. (a) Green D C 1979 J. Org. Chem. 44 1476; (b) Blanchard P, Salle M, Duguay G, Jubault M and Gorgues A 1992 Tetrahedron Lett. 33 2685; (c) Gorgues A Hudhomme P and Salle M 2004 Chem. Rev. 104 5151

  14. Abdel–Mottaleb M M S, Gomar–Nadal E, Surin M, Uji–i H, Mamdouh W, Veciana J, Lemaur V, Rovira C, Cornil J, Lazzaroni R, Amabilino D B, De Feyter S and De Schryver F C 2005 J. Mater. Chem. 15 4601

    Article  Google Scholar 

  15. Xu C-H, Sun W, Zhang C, Zhou C, Fang C-J and Yan C-H 2009 Chem. Eur. J. 15 8717

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SUBI J GEORGE.

Rights and permissions

Reprints and permissions

About this article

Cite this article

JAIN, A., VENKATA RAO, K., GOSWAMI, A. et al. Metal selective co-ordinative self-assembly of π-donors. J Chem Sci 123, 773–781 (2011). https://doi.org/10.1007/s12039-011-0163-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-011-0163-7

Keywords.

Navigation