Journal of Chemical Sciences

, Volume 123, Issue 5, pp 615–621 | Cite as

ZnO nanoparticle as catalyst for efficient green one-pot synthesis of coumarins through Knoevenagel condensation



Green chemistry protocols with the reusability of the nano particle as catalyst in the synthesis of coumarins is described. The zinc oxide (ZnO) nanoparticles functions as highly effective catalyst for the reactions of various o-hydroxy benzaldehydes with 1,3-dicarbonyl compounds under microwave and thermal conditions to afford the corresponding coumarins in moderate to good yields. The catalyst is inexpensive, stable, can be easily recycled and reused for several cycles with consistent activity.

Graphical Abstract

Zinc oxide (ZnO) nanoparticles functions as highly effective catalyst for the reactions of various o-hydroxy benzaldehydes with 1,3-dicarbonyl compounds under microwave and thermal conditions to afford the corresponding coumarins in moderate to good yields.


Knoevenagel condensation o-hydroxy benzaldehyde zinc oxide (ZnO) catalyst green chemistry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sheldon R A and Dakka 1994 J. Catal. Today 19 215CrossRefGoogle Scholar
  2. 2.
    Sheldon R A and Downing R S 1999 Appl. Catal. A 189 163CrossRefGoogle Scholar
  3. 3.
    Freeman F 1981 Chem. Rev. 80 329CrossRefGoogle Scholar
  4. 4.
    Tietze L F and Saling Pm 1992 Synlett. 281Google Scholar
  5. 5.
    Tietze L F 1996 Chem. Rev. 96 115CrossRefGoogle Scholar
  6. 6.
    Zhou J F, Song Y Z, Lv J S, Gong G X and Tu S 2009 Syn. Commun. 39 1443CrossRefGoogle Scholar
  7. 7.
    Kung H H 1989 Transition metal oxides: Surface chemistry and catalysis 45 1CrossRefGoogle Scholar
  8. 8.
    Henrich V E and Cox P A 1994 The surface science of metal oxides. Cambridge, UK: Cambridge University PressGoogle Scholar
  9. 9.
    Noguera C 1996 Physics and Chemistry at oxide surface. Cambridge, UK: Cambridge university pressCrossRefGoogle Scholar
  10. 10.
    Ibrahim Salem 2003 Catal. Rev. 45 205CrossRefGoogle Scholar
  11. 11.
    (a) Rout L, Sen T K and Punniyamurthy T 2007 Angew Chem. Int. Ed. 46 5583; (b) Choudary B M, Kantam M L, Ranganath K V S, Mahender K and Sreedhar B. 2004 J. Am. Chem. Soc. 126 396; (c) Kantam M L, Laha S, Yadav J, Choudary B M and Sreedhar B 2006 Adv. Synth. Catal. 348 867; (d) Zhang J, Zhang Z, Wang Y, Zheng X and Wang Z 2008 Eur. J. Org. Chem. 511; (e) Beckers J and Rothenberg G 2008 Dalton Trans. 6573; (f) Thathagar M B, Beckers J and Rothenberg G 2003 Adv. Synth. Catal. 345 979Google Scholar
  12. 12.
    Moghaddam F M, Saeidian H, Mirjafary Z and Sadeghi A 2009 J. Iran Chem. Soc. 6 317CrossRefGoogle Scholar
  13. 13.
    (a) Shantikumar N, Abhilash S, Divya Rani V V, Deepthy M, Seema N, Manzoor K and Satish R 2009 J. Mater Sci: Mater Med. 20 S235; (b) Premanathan M, Karthikeyan K, Jeyasubramanian K and Govindasamy M 2011 Nanomedicine: Nanotechnology, Biology, and Medicine 7 184; (c) Sharghi H and Hosseini M 2002 Synthesis 1057; (d) Sarvari H and Sharghi H 2004 J. Org. Chem. 69 6953; (e) Gupta M, Paul S, Gupta R and Loupy A 2005 Tetrahedron Lett. 46 4957; (f) Hosseini M Sarvari 2005 Synthesis 787; (g) Kim Y J and Varma R S 2004 Tetrahedron Lett. 45 7205; Hosseini Sarvari M and Shaghi H 2005 Tetrahedron 61 10903; (h) Tamaddon F, Amrollahi M A and Sharafat L 2005 Tetrahedron Lett. 46 7841Google Scholar
  14. 14.
    Modranka J N, Nawrot E and Graczyk J 2007 Eur. J. Med. Chem. 42 891CrossRefGoogle Scholar
  15. 15.
    Rosselli S, Maggio A, Bellone G, Formisano C, Basile A, Cicala C, Alfieri A, Mascolo N and Bruno M 2007 Planta Med. 72 116CrossRefGoogle Scholar
  16. 16.
    Deng Y and Nicholson R A 2005 Pesticide Biochemistry and Physiology 81 39CrossRefGoogle Scholar
  17. 17.
    Patel H. S, Patel S R and Macromol J 1984 Sci. Part A: Pure Appl. Chem. 21 343CrossRefGoogle Scholar
  18. 18.
    Yagodinets P I, Skripskaya O V, Chernyuk I N, Bezverkhnii V D, Vasikand L I and Sinchenko V G 1996 Pharmaceutical Chemistry Journal 30 50CrossRefGoogle Scholar
  19. 19.
    Murray Prog R D H 1991 Chem. Org. Nat. Prod. 58 84Google Scholar
  20. 20.
    Kennedy R O and Thornes R D 1997 Coumarins: Biology, applications and mode of action. Chichester: Wiley and SonsGoogle Scholar
  21. 21.
    Pechmann H and Duisberg C 1884 Chem. Ber. 17 929CrossRefGoogle Scholar
  22. 22.
    Johnson J R 1942 Org. React. 1 210Google Scholar
  23. 23.
    (a) Jones G 1967 Org. React. 15 204; (b) Brufola G, Fringuelli F, Piermatti O and Pizzo F 1996 Heterocycles 43 1257Google Scholar
  24. 24.
    Shirner R L 1942 Org. React. 1 1Google Scholar
  25. 25.
    Yavari I, Hekmat-Shoar R and Zonouzi A 1998 Tetrahedron Lett. 39 2391CrossRefGoogle Scholar
  26. 26.
    Kisanga P, Fei X and Verkade 2002 J. Synth. Commun. 32 1135CrossRefGoogle Scholar
  27. 27.
    Alvim J, Dias R L A, Castilho M S, Oliva G and Corrêa A G 2005 J. Braz. Chem. Soc. 763 773Google Scholar
  28. 28.
    Prajapati D and Gohain M 2007 Catal. Lett. 119 59CrossRefGoogle Scholar
  29. 29.
    Harikumar K R and Rao C N R 1999 Phys. J. Chem. B. 103 2445CrossRefGoogle Scholar
  30. 30.
    Shah M A 2008 African Phys. Rev. 2 0011Google Scholar
  31. 31.
    Liu B and Zeng H C 2003 JACS Commun. 125 4430CrossRefGoogle Scholar
  32. 32.
    Lu C-H and Yeh C-H 2000 Ceram. Int. 26 35CrossRefGoogle Scholar
  33. 33.
    Liu et al. 2008 J. Zhejiang Univ. Sci. B 9 990CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2011

Authors and Affiliations

    • 1
    • 1
    • 1
    • 1
  1. 1.Department of Studies and Research in Industrial Chemistry, School of Chemical SciencesKuvempu UniversityShankaraghattaIndia

Personalised recommendations