Skip to main content
Log in

DFT study of the reactions of Mo and Mo + with CO2 in gas phase

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) calculations have been performed to explore the potential energy surfaces of C–O bond activation in CO2 molecule by gas-phase Mo + cation and Mo atom, in order to better understanding the mechanism of second-row metal reacting with CO2. The minimum energy reaction path is found to involve the spin inversion in the different reaction steps. This potential energy curve-crossing dramatically affects reaction exothermic. The present results show that the reaction mechanism is insertion-elimination mechanism along the C–O bond activation branch. All the theoretical results not only support the existing conclusions inferred from early experiment, but also complement the pathway and mechanism for this reaction.

For the reaction between Mo atom and CO2, it is found that the reaction system would likely to change its spin multiplicity twice in going from the entrance channel to the exit channel. Specifically, it can be described as 5Mo+CO25IM1→5TS125IM2→5TS23→CP4→3IM3→CP6→5MoO+CO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leitner W 2002 Acc. Chem. Res. 35 746

    Article  CAS  Google Scholar 

  2. Rondinelli F, Russo N and Toscano M 2006 Theor. Chem. Acc. 115 434

    Article  CAS  Google Scholar 

  3. Tommaso S D, Marino T, Rondinelli F, Russo N and Toscano M 2007 J. Chem. Theor. Comput. 3 811

    Article  Google Scholar 

  4. Kafafi Z H, Hauge R H, Billups W E and Margrave J L 1983 J. Am. Chem. Soc. 105 3886

    Article  CAS  Google Scholar 

  5. Andrews L and Tague T J 1998 J. Am. Chem. Soc. 120 13230

    Article  Google Scholar 

  6. Solov’ev V N, Polikarpov E V, Nemukhin A V and Sergeev G B 1999 J. Phys. Chem. A. 103 6721

    Article  Google Scholar 

  7. Zhou M F and Andrews L 1998 J. Am. Chem. Soc. 120 13230

    Article  CAS  Google Scholar 

  8. Galan F, Fouassier M, Tranquille M, Mascetti J and Papai I 1997 J. Phys. Chem. A. 101 2626

    Article  CAS  Google Scholar 

  9. Chertihin G V and Andrews L 1995 J. Am. Chem. Soc. 117 1595

    Article  CAS  Google Scholar 

  10. Zhou M F and Andrews L 1999 J. Phys. Chem. A. 103 2066

    Article  CAS  Google Scholar 

  11. Sievers M R and Armentrout P B 1999 Int. J. Mass. Spectrom. 185 117

    Article  Google Scholar 

  12. Sievers M R and Armentrout P B 1998 Int. J. Mass. Spectrom. 179 115

    Google Scholar 

  13. Sievers M R and Armentrout P B 1999 Inorg. Chem. 38 397

    Article  CAS  Google Scholar 

  14. Sievers M R and Armentrout P B 1995 J. Chem. Phys. 102 754

    Article  CAS  Google Scholar 

  15. Sievers M R and Armentrout P B 1998 Int. J. Mass. Spectrom. 179 103

    Article  Google Scholar 

  16. Kretzschmar I, Schroder D, Schwarz H and Armentrout P B 2006 Int. J. Mass. Spectrom. 249 263

    Article  Google Scholar 

  17. Chen M, Wang X, Zhang L and Qin Q Z 2000 J. Phys. Chem. A. 104 7010

    Article  CAS  Google Scholar 

  18. Souter P F and Andrews L 1997 Chem. Commun. 777

  19. Wang X, Chen M, Zhang L and Qin Q Z 2000 J. Phys. Chem. A. 104 758

    Article  CAS  Google Scholar 

  20. Souter P F and Andrews L 1997 J. Am. Chem. Soc. 119 7350

    Article  CAS  Google Scholar 

  21. Zhou M F, Liang B and Andrews L 1999 J. Phys. Chem. A. 103 2013

    Article  CAS  Google Scholar 

  22. Liang B and Andrews L 2002 J. Phys. Chem. A. 106 595

    Article  CAS  Google Scholar 

  23. Liang B and Andrews L 2002 J. Phys. Chem. A. 106 4042

    Article  CAS  Google Scholar 

  24. Andrews L, Zhou M F, Liang B, Li J and Bursten B E 2000 J. Am. Chem. Soc. 122 11440

    Article  CAS  Google Scholar 

  25. Quere A M L, Xu C and Manceron L 1991 J. Phys. Chem. 95 3031

    Article  Google Scholar 

  26. Papai I, Schubert G, Hannachi Y and Mascetti J 2002 J. Phys. Chem. A. 106 9551

    Article  CAS  Google Scholar 

  27. Papai I, Mascetti J and Fournier R 1997 J. Phys. Chem. A. 101 4465

    Article  CAS  Google Scholar 

  28. Papai I, Hannachi Y, Gwizdala S and Mascetti J 2002 J. Phys. Chem. A. 106 4181

    Article  CAS  Google Scholar 

  29. Hannachi Y, Mascetti J, Stirling A and Papai I 2003 J. Phys. Chem. A. 107 6708

    Article  CAS  Google Scholar 

  30. Dobrogorskaya Y, Mascetti J, Papai I and Hannachi Y 2005 J. Phys. Chem. A. 109 7932

    Article  CAS  Google Scholar 

  31. Zhou M F, Tsumori N, Li Z, Fan K N, Andrews L and Xu Q 2002 J. Am. Chem. Soc. 124 12936

    Article  CAS  Google Scholar 

  32. Jiang L and Xu Q 2005 J. Am. Chem. Soc. 127 42

    Article  CAS  Google Scholar 

  33. Xu Q, Jiang L and Tsumori N 2005 Angew. Chem. Int. Ed. 44 4338

    Article  CAS  Google Scholar 

  34. Jiang L and Xu Q 2005 J. Am. Chem. Soc. 127 8906

    Article  CAS  Google Scholar 

  35. Campbell M L 1999 Phys. Chem. Chem. Phys. 1 3731

    Article  CAS  Google Scholar 

  36. Campbell M L 2000 Chem. Phys. Lett. 330 547

    Article  CAS  Google Scholar 

  37. Yrsson R and Mascetti J 2005 React. Kinet. Catal. Lett. 285 107

    Google Scholar 

  38. Jiang L, Zhang X B, Han S and Xu Q 2008 Inorg. Chem. 47 4826

    Article  CAS  Google Scholar 

  39. Jiang L and Xu Q 2007 J. Phys. Chem. A. 111 3519

    Article  CAS  Google Scholar 

  40. Sievers M R and Armentrout P B 1998 J. Phys. Chem. A. 102 10754

    Article  CAS  Google Scholar 

  41. Fischer G, Goursot A, Coq Bernard, Delahay G and Pal S 2006 ChemPhysChem. 7 1795

  42. Cho H G and Andrews L 2005 J. Am. Chem. Soc. 127 8226

    Article  CAS  Google Scholar 

  43. Armentrout P B 2007 Organometallics. 26 5473

    Article  CAS  Google Scholar 

  44. Armentrout P B 2007 Organometallics. 26 5486

    Article  CAS  Google Scholar 

  45. Rutkowska-Zbik D, Tokarz-Sobieraj R and Witko M 2007 J. Chem. Theor. Comput. 3 914

    Article  CAS  Google Scholar 

  46. Becke A D 1993 J. Chem. Phys. 98 5648

    Article  CAS  Google Scholar 

  47. Lee C, Yang W and Parr R G 1988 Phys. Rev. B. 37 785

    Article  CAS  Google Scholar 

  48. Holthausen M C and Koch W 1996 J. Am. Chem. Soc. 118 9932

    Article  CAS  Google Scholar 

  49. Holthausen M C, Fiedler A, Schwarz H and Koch W 1996 J. Phys. Chem. 100 6236

    Article  CAS  Google Scholar 

  50. Guo Z, Ke Z F, Phillips D L and Zhao C Y 2008 Organometallics. 27 181

    Article  CAS  Google Scholar 

  51. Dolg M, Stoll H, Savin A and Preuss H 1989 Theor. Chim. Acta. 75 173

    Article  CAS  Google Scholar 

  52. Fukui K 1981 Accounts. Chem. Res. 14 363

    Article  CAS  Google Scholar 

  53. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery J A Jr, Stratmann R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Baboul A G, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Gonzalez C, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gonzalez C, Head-Gordon M, Replogle E S and Pople J A 2003 Gaussian 03, Revision B04, Pittsburgh PA: Gaussian Inc.

    Google Scholar 

  54. Broclawik E 1995 Int. J. Quantum. Chem. 56 779

    Article  CAS  Google Scholar 

  55. Kretzschmar I, Fiedler A, Harvey J N, Schroder D and Schwarz H 1997 J. Phys. Chem. A. 101 6252

    Article  CAS  Google Scholar 

  56. Yoshizawa K, Shiota Y and Yamabe T 1999 J. Chem. Phys. 111 538

    Article  CAS  Google Scholar 

  57. Fiedler A, Schroder D, Shaik S and Schwarz H 1994 J. Am. Chem. Soc. 116 3563

    Article  Google Scholar 

  58. Harvey J N, Poli R and Smith K M 2003 Coord. Chem. Rev. 238 347

    Article  Google Scholar 

  59. Zhang G B, Li S H and Jiang Y S 2003 Organometallics. 22 3820

    Article  CAS  Google Scholar 

  60. Schroder D, Shaik S and Schwarz H 2000 Acc. Chem. Res. 33 139

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GUOLIANG DAI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

HAN, D., DAI, G., CHEN, H. et al. DFT study of the reactions of Mo and Mo + with CO2 in gas phase. J Chem Sci 123, 299–309 (2011). https://doi.org/10.1007/s12039-011-0072-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-011-0072-9

Keywords

Navigation