Skip to main content

Advertisement

Log in

Synthesis, characterization, ab initio calculations, thermal behaviour and thermodynamics of some oxovanadium(IV) complexes involving O,O- and N,N-donor moieties

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Some oxovanadium(IV) complexes, namely bis(1,1,1-trifluro-2,4-pentanedionato-O,O′) oxovanadium (IV), [VO(tfac)2(H2O)], bis(1-phenyl-2,4-pentanedionato-O,O′)oxovanadium(IV), [VO(phac)2(H2O)], bis(1,3-diphenyl-2,4-pentanedionato-O,O′)oxovanadium(IV), [VO(dphac)2 (H2O)], of the type [VO(O4)] and bis(pyrolidineaniline)oxovanadium(IV), [VO(pyran)2(H2O)], bis(p-hydroxypyrolidineaniline) oxovanadium(IV), [VO(p-hydroxypyran)2(H2O)], bis(p-methoxypyrolidineaniline) oxovanadium(IV), [VO(p-MeOpyran)2 (H2O)], bis(p-chloropyrolidineaniline)oxovanadium(IV), [VO(p-chloropyran)2(H2O)], bis(p-bromopyrolidineaniline)oxovanadium(IV), [VO(p-bromopyran)2(H2O)], bis(p-cyano pyrolidineaniline)oxovanadium(IV), [VO(p-cyanopyran)2(H2O)], and bis(pyrolidinebenzylamine) oxovanadium(IV), [VO(pyrbz)2(H2O)], of the type [VO(N4)] were synthesized and characterized by IR, UV-Vis, mass spectrometry, elemental analysis, magnetic moment and thermogravimetry in order to evaluate their thermal stability and thermal decomposition pathways. The number of steps and, in particular, the starting temperature of decomposition of these complexes depends on the equatorial ligand. Also, formation constants of the complexes have been determined by UV-Vis absorption spectroscopy through titration of the ligands with the metal ions at constant ionic strength (0.1 M NaClO4) and at 25°C. According to the thermodynamic studies, as the steric character of the ligand increases, the complexation tendency to VO(IV) center decreases. Also, the ab initio calculations were carried out to determine the structural and the geometrical properties of the complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mohammadi K, Thompson K H, Patrick B O, Storr T, Martins C, Polishchuk E, Yuen V G, McNeill J H and Orvig C 2005 J. Inorg. Biochem. 99 2217

    Article  CAS  Google Scholar 

  2. Crans D C 2000 J. Inorg. Biochem. 80 123

    Article  CAS  Google Scholar 

  3. Maurya R C and Rajput S 2004 J. Molecular Struct. 687 34

    Article  Google Scholar 

  4. Plass W 2003 Coord. Chem. Rev. 237 205

    Article  CAS  Google Scholar 

  5. Rehder D 2003 Inorg. Chem. Commun. 6 604

    Article  CAS  Google Scholar 

  6. Aranha P E, Souza. M, Romera S, Ramos L A, Santos M, Dockal E and Cavalheiro E T G 2007 Thermochim. Acta 453 9

    Article  CAS  Google Scholar 

  7. Ahmad S, Isab A A, Ali S and Al-Arfaj A R 2006 Polyhedron 25 1633

    Article  CAS  Google Scholar 

  8. Posner B I, Shaver A and Fantus I G 1990 in New antidiabetic drugs (eds) C J Bailey and P R Flatt (Gordon London S), p. 107

  9. Posner B I, Faure R, Burgess J W, Bevan A P, Lachance D, Zhang-Sun G, Fantus I G, Hall D A, Lum B S and Shaver A 1994 J. Biol. Chem. 269 4596

    CAS  Google Scholar 

  10. Shaver A, Hall D A, Ng J B, Lebuis A M, Hynes R C and Posner B I 1995 Inorg. Chim. Acta 229 253

    Article  CAS  Google Scholar 

  11. Shaver A, Ng J B, Hall D A, Soo Lum B and Posner B I 1993 Inorg. Chem. 32 3109

    Article  CAS  Google Scholar 

  12. Kadota S, Fantus I G, Deragon G, Guyda H J, Hersh B and Posner B I 1987 Biochem. Biophys. Res. Commun. 147 259

    Article  CAS  Google Scholar 

  13. McNeill J H, Yuen V G, Hoveyda H R and Orvig C 1992 J. Med. Chem. 35 1489

    Article  CAS  Google Scholar 

  14. Caravan P, Gelmini L, Glover N, Herring F G, Li H, McNeill J H, Rettig S J, Setyawati I A, Shuter E, Sun Y, Tracey A S, Yuen V G and Orvig C 1995 J. Am. Chem. Soc. 117 12759

    Article  Google Scholar 

  15. Li J, Elberg G, Crans D C and Shechter Y 1996 Biochem. 35 8314

    Article  CAS  Google Scholar 

  16. Morgan G T and Moss H W 1914 J. Chem. Soc. 103 78

    Google Scholar 

  17. Kaneda K, Jitsukawa K, Itoh T and Teranishi S 1980 J. Org. Chem. 45 3004

    Article  CAS  Google Scholar 

  18. Hirao T 1997 Chem. Rev. 97 2707

    Article  CAS  Google Scholar 

  19. Wender P A, Rice K D and Schnute M E 1997 J. Am. Chem. Soc. 119 7897

    Article  CAS  Google Scholar 

  20. Taguchi H, Isobe K, Nakamura Y and Kawaguchi S 1975 Chem. Lett. 757

  21. Selbin J, Manning H R and Cessac G 1963 J. Inorg. Nucl. Chem. 2 1253

    Article  Google Scholar 

  22. Atherton N M, Gibbon P J and Shohoji M C B 1982 J. Chem. Soc. Dalton Trans 2289

  23. Dodge R P, Templeton D H and Zalkin A 1961 J. Chem. Phys. 35 55

    Article  CAS  Google Scholar 

  24. Amin S, Cryer K, Zhang B, Dutta S, Eaton S, Anderson O, Miller S and Crans D 2000 Inorg. Chem. 39 406

    Article  CAS  Google Scholar 

  25. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C and Pople J A 2003 (Pittsburgh PA: Gaussian, Inc)

  26. Ghose A K, Pritchett A and Crippen G M 1994 J. Comput. Chem. 9 80

    Article  Google Scholar 

  27. Rogers D and Hopfinger A J 1994 J. Chem. Inf. Comput. Sci. 34 854

    CAS  Google Scholar 

  28. Bodor N, Gabanyi Z and Wong C 1989 J. Am. Chem. Soc. 111 3783

    Article  CAS  Google Scholar 

  29. Ooi T, Oobatake M, Nemethy G and Scheraga H A 1987 Proc. Natl. Acad. Sci. USA 84 3086

    Article  CAS  Google Scholar 

  30. Viswanadhan V N, Ghose A K, Revankar G N and Robins R K 1989 J. Chem. Inf. Comput. Sci. 29 163

    CAS  Google Scholar 

  31. Ghose A K and Crippen GM 1987 J. Chem. Inf. Comput. Sci. 27 21

    CAS  Google Scholar 

  32. Selwood P W 1956 Magnetochemistry (New York: Interscience)

    Google Scholar 

  33. Symal A 1975 Coord. Chem. Rev. 21 309

    Article  Google Scholar 

  34. Selbin J 1966 Coord. Chem. Rev. 1 293

    Article  CAS  Google Scholar 

  35. Abdel-Ghani N T and Sherif O E 1989 Thermochim. Acta 156 69

    Article  Google Scholar 

  36. Leggett D L 1985 Computational methods for the determination of formation constant (New York: Plenum Press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mozaffar Asadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asadi, M., Ghatee, M.H., Torabi, S. et al. Synthesis, characterization, ab initio calculations, thermal behaviour and thermodynamics of some oxovanadium(IV) complexes involving O,O- and N,N-donor moieties. J Chem Sci 122, 539–548 (2010). https://doi.org/10.1007/s12039-010-0088-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-010-0088-6

Keywords

Navigation