Advertisement

Journal of Chemical Sciences

, Volume 122, Issue 3, pp 295–310 | Cite as

Supramolecular chemistry and crystal engineering

  • Ashwini Nangia
Article

Abstract

Advances in supramolecular chemistry and crystal engineering reported from India within the last decade are highlighted in the categories of new intermolecular interactions, designed supramolecular architectures, network structures, multi-component host-guest systems, cocrystals, and polymorphs. Understanding self-assembly and crystallization through X-ray crystal structures is illustrated by two important prototypes — the large unit cell of elusive saccharin hydrate, Na16(sac)16 · 30H2O, which contains regular and irregular domains in the same structure, and by the Aufbau build up of zinc phosphate framework structures, e.g. ladder motif in [C3N2H12][Zn(HPO4)2] to layer structure in [C3N2H12][Zn2(HPO4)3] upon prolonged hydrothermal conditions. The pivotal role of accurate X-ray diffraction in supramolecular and structural studies is evident in many examples. Application of the bottomup approach to make powerful NLO and magnetic materials, design of efficient organogelators, and crystallization of novel pharmaceutical polymorphs and cocrystals show possible future directions for interdisciplinary research in chemistry with materials and pharmaceutical scientists. This article traces the evolution of supramolecular chemistry and crystal engineering starting from the early nineties and projects a center stage for chemistry in the natural sciences.

Keywords

Crystallization hydrogen bond materials nanoscience pharmaceutical self-assembly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lehn J-M 1978 Pure Appl. Chem. 50 871–892CrossRefGoogle Scholar
  2. 2.
    Lehn J-M 1995 Supramolecular chemistry: Concepts and perspectives (Weinheim: VCH)CrossRefGoogle Scholar
  3. 3.
    Steed J W and Atwood J L 2000 Supramolecular chemistry (Chichester: Wiley)Google Scholar
  4. 4.
    Schalley C A (ed.) 2007 Analytical methods in supramolecular chemistry (Weinheim: Wiley-VCH)Google Scholar
  5. 5.
    Schmidt G M J 1971 Pure Appl. Chem. 27 647CrossRefGoogle Scholar
  6. 6.
    Desiraju G R 1989 Crystal engineering: The design of organic solids (Amsterdam: Elsevier)Google Scholar
  7. 7.
    Desiraju G R and Steiner T 1999 The weak hydrogen bond in structural chemistry and biology (Oxford: OUP)Google Scholar
  8. 8.
    Banerjee R, Desiraju G R, Mondal R and Howard J A K 2004 Chem. Eur. J. 10 3373CrossRefGoogle Scholar
  9. 9.
    Balamurugan V, Hundal M S and Mukherjee R 2004 Chem. Eur. J. 10 1683CrossRefGoogle Scholar
  10. 10.
    Desiraju G R 2002 Acc. Chem. Res. 35 565CrossRefGoogle Scholar
  11. 11.
    Munshi P and Guru Row T N 2005 CrystEngComm 7 608CrossRefGoogle Scholar
  12. 12.
    Ranganathan A, Kulkarni G U and Rao C N R 2003 J. Phys. Chem. A107 6073Google Scholar
  13. 13.
    Vishweshwar P, Babu N J, Nangia A, Mason S A, Puschmann H, Mondal R and Howard J A K 2004 J. Phys. Chem. A108 9406Google Scholar
  14. 14.
    Desiraju G R 1995 Angew. Chem., Int. Ed. Engl. 34 2311CrossRefGoogle Scholar
  15. 15. (a)
    Zerkowski J A, Mathias J P and Whitesides G M 1994 J. Am. Chem. Soc. 116 4304Google Scholar
  16. 15. (b)
    Palacin S, Chin D N, Simanek E E, MacDonald J C, Whitesides G M, McBride M T and Palmore T R 1997 J. Am. Chem. Soc. 119 11807CrossRefGoogle Scholar
  17. 16. (a)
    Vangala V R, Bhogala B R, Dey A, Desiraju G R, Broder C K, Smith P S, Mondal R, Howard J A K and Wilson C C 2003 J. Am. Chem. Soc. 125 14495CrossRefGoogle Scholar
  18. 16. (b)
    Dey A, Kirchner M T, Vangala V R, Desiraju G R, Mondal R and Howard J A K 2005 J. Am. Chem. Soc. 127 10545CrossRefGoogle Scholar
  19. 17.
    Moorthy J N, Natarajan R, Mal P and Venugopalan P 2002 J. Am. Chem. Soc. 124 6530CrossRefGoogle Scholar
  20. 18. (a)
    George S, Nangia A, Lam C-K, Mak T C W and Nicoud J-F 2004 Chem. Commun. 1202Google Scholar
  21. 18. (b)
    Reddy L S, Chandran S K, George S, Babu N J and Nangia A 2007 Cryst. Growth Des. 7 2675CrossRefGoogle Scholar
  22. 19. (a)
    Sarkar M and Biradha M 2006 Cryst. Growth Des. 6 202CrossRefGoogle Scholar
  23. 19. (b)
    Rajput L, Singha S and Biradha K 2007 Cryst. Growth Des. 7 2788CrossRefGoogle Scholar
  24. 20.
    Jeffrey G A and Saenger W 1991 Hydrogen bonding in biological structures (Berlin: Springer-Verlag)Google Scholar
  25. 21.
    Mehta G, Sen S and Ramesh S S 2007 Eur. J. Org. Chem. 423Google Scholar
  26. 22. (a)
    Lehmler H-J, Robertson L W, Parkin S and Brock C P 2002 Acta Crystallogr. B58 140Google Scholar
  27. 22. (b)
    Brock C P 2002 Acta Crysallogr. B58 1025CrossRefGoogle Scholar
  28. 23.
    Reddy P A N, Nethaji M and Chakravarty A R 2003 Inorg. Chem. Comm. 6 698CrossRefGoogle Scholar
  29. 24.
    Sarma R J and Baruah J B 2007 Cryst. Growth Des. 7 989CrossRefGoogle Scholar
  30. 25.
    Aitipamula S and Nangia A 2005 Chem. Commun. 3159Google Scholar
  31. 26.
    Supriya S and Das S K 2007 J. Am. Chem. Soc. 129 3464CrossRefGoogle Scholar
  32. 27.
    Santra R and Biradha K 2008 CrystEngComm. 10 1524CrossRefGoogle Scholar
  33. 28.
    Sarkar M and Biradha K 2007 Cryst. Growth Des. 7 1318CrossRefGoogle Scholar
  34. 29.
    Chandrasekhar V, Gopal K, Nagendran S, Steiner A and Zacchini S 2006 Cryst. Growth Des. 6 267CrossRefGoogle Scholar
  35. 30. (a)
    Bhogala B R, Basavoju S and Nangia A 2005 Cryst. Growth Des. 5 1683CrossRefGoogle Scholar
  36. 30. (b)
    Bhogala B R and Nangia A 2008 New J. Chem. 32 800CrossRefGoogle Scholar
  37. 31.
    Arora K K and Pedireddi V R 2003 J. Org. Chem. 68 9177CrossRefGoogle Scholar
  38. 32.
    Jacques J, Collet A and Wilen S H 1981 Enantiomers, racemates and resolution (New York: Wiley-Interscience)Google Scholar
  39. 33.
    Brock C P and Duncan L L 1994 Chem. Mater. 6 1307CrossRefGoogle Scholar
  40. 34.
    Balamurugan V and Mukherjee R 2005 CrystEng-Comm. 7 337Google Scholar
  41. 35.
    Mandal S and Natarajan S 2002 Cryst. Growth Des. 2 665CrossRefGoogle Scholar
  42. 35. (b)
    Natarajan S, Mandal S, Mahata P, Rao V K, Ramaswamy P, Banerjee A, Paul A K and Ramya K V 2006 J. Chem. Sci. 118 525CrossRefGoogle Scholar
  43. 36.
    Rao C N R, Natarajan S, Choudhary A, Neeraj S and Ayi A A 2001 Acc. Chem. Res. 34 80CrossRefGoogle Scholar
  44. 37.
    The News Sta. 2004 Splish, splash; Science 306 2013CrossRefGoogle Scholar
  45. 38.
    Nangia A 2007 In Encyclopaedia of supramolecular chemistry (eds) J L Atwood and J W Steed (New York: Marcel Dekker) 1 1–9; www.informaworld.com/10.1081/E-ESMC-1200 23838Google Scholar
  46. 39.
    Mascal M, Infantes L and Chisholm J 2006 Angew. Chem. Int. Ed. 45 32CrossRefGoogle Scholar
  47. 40. (a)
    Jovanovski G and Kamenar B 1982 Cryst. Struct. Commun. 11 247Google Scholar
  48. 40. (b)
    Naumov P, Jovanovski G, Abbrent S and Tergenius L-E 2000 Thermochim. Acta 359 123CrossRefGoogle Scholar
  49. 41.
    Banerjee R, Bhatt P M, Kirchner M T and Desiraju G R 2005 Angew. Chem. Int. Ed. 44 2515CrossRefGoogle Scholar
  50. 42.
    Naumov P, Jovanovski G, Grupče, Kaitner B, Rae A D and Ng S W 2005 Angew. Chem. Int. Ed. 44 1251CrossRefGoogle Scholar
  51. 43.
    Roy S, Banerjee R, Nangia A and Kruger G J 2006 Chem. Eur. J. 12 3777CrossRefGoogle Scholar
  52. 44.
    Choudhury A R, Islam K, Kirchner M T, Mehta G and Guru Row T N 2004 J. Am. Chem. Soc. 126 12274CrossRefGoogle Scholar
  53. 45.
    Vishweshwar P, McMahon J A, Oliveira M, Peterson M L and Zaworotko M J 2005 J. Am. Chem. Soc. 127 16802CrossRefGoogle Scholar
  54. 46.
    Bond A D, Boese R and Desiraju G R 2007 Angew. Chem. Int. Ed. 46 618CrossRefGoogle Scholar
  55. 47.
    Cambridge Crystallographic Data Center, www.ccdc.cam.ac.uk. The current release of the CSD (Ver. 5.30, November 2008, ConQuest 1.11) contains over 450,000 entries
  56. 48. (a)
    Almarsson Ö and Zaworotko M J 2004 Chem. Commun. 1889Google Scholar
  57. 48. (b)
    Aakeröy C B and Salmon D J 2005 CrystEngComm. 7 439CrossRefGoogle Scholar
  58. 48. (c)
    Trask A V and Jones W 2005 Top. Curr. Chem. 254 41Google Scholar
  59. 48. (d)
    Meanwell N A 2008 Ann. Rep. Med. Chem. 43 373CrossRefGoogle Scholar
  60. 49. (a)
    Perumalla S R, Suresh E and Pedireddi V R 2005 Angew. Chem. Int. Ed. 44 7753CrossRefGoogle Scholar
  61. 49. (b)
    Thomas R and Kulkarni G U 2008 J. Mol. Struct. 873 160CrossRefGoogle Scholar
  62. 50. (a)
    Sarma B, Nath N K, Bhogala B R and Nangia A 2009 Cryst. Growth Des. 9 1546CrossRefGoogle Scholar
  63. 50. (b)
    Shattock T R, Arora K K, Vishweshwar P and Zaworotko M J 2008 Cryst. Growth Des. 8 4533CrossRefGoogle Scholar
  64. 51.
    Babu N J, Reddy L S and Nangia A 2007 Amide-Noxide heterosynthon and amide dimer homosynthon in cocrystals of carboxamide drugs and pyridine-Noxides. Mol. Pharmaceutics 4 417–434CrossRefGoogle Scholar
  65. 52. (a)
    Rath H, Sankar J, PrabhuRaja V, Chandrashekar T K, Nag A and Goswami D 2005 J. Am. Chem. Soc. 127 11608CrossRefGoogle Scholar
  66. 52. (b)
    Gokulnath S and Chandrashekar T K 2008 J. Chem. Sci. 120 137CrossRefGoogle Scholar
  67. 53.
    Prakash M J, Raghavaiah P, Krishna Y S R and Radhakrishnan T P 2008 Angew. Chem. Int. Ed. 47 3969CrossRefGoogle Scholar
  68. 54.
    Ballabh A, Trivedi D R and Dastidar P 2006 Chem. Mater. 18 3795CrossRefGoogle Scholar
  69. 55.
    Bhattacharya S and Pal A 2008 J. Phys. Chem. B112 4918Google Scholar
  70. 56. (a)
    Nonappa and Maitra U 2008 Org. Biomol. Chem. 6 657CrossRefGoogle Scholar
  71. 56. (b)
    Mukhopadhyay S, Maitra I, Ira, Krishnamoorthy G, Schmidt J and Talmon Y 2004 J. Am. Chem. Soc. 126 15905CrossRefGoogle Scholar
  72. 57.
    Behera J N and Rao C N R 2006 J. Am. Chem. Soc. 128 9334CrossRefGoogle Scholar
  73. 58. (a)
    Moorthy J N, Venkatakrishnan P, Natarajan P, Huang D-F and Chow T J 2008 J. Am. Chem. Soc. 130 17320CrossRefGoogle Scholar
  74. 58. (b)
    Moorthy J N, Venkatakrishanan P, Huang D-F and Chow T J 2008 Chem. Commun.2146Google Scholar
  75. 59.
    Ball P 2009 Chem. World 58Google Scholar
  76. 60.
    Feynman R 1959 There’s plenty of room at the bottom (Caltech: American Physical Society) http://www.its.caltech.edu/~feynman/plenty.html Google Scholar
  77. 61.
    Pepinsky R 1955 Phys. Rev. 100 971Google Scholar
  78. 63.
    Halford B 2009 Chem. Engg. News March 30, 34Google Scholar
  79. 64.
    Desiraju G R 2005 Curr. Sci. 88 374Google Scholar
  80. 65.
    Seebach D 1990 Angew. Chem. Int. Ed. Engl. 29 1320CrossRefGoogle Scholar
  81. 66.
    Lehn J-M (Founding ed.) 1994–2004 Perspectives in supramolecular chemistry, Vols. 1–8 (Chichester: John Wiley)Google Scholar
  82. 67. (a)
    Tiekink E R T and Vittal J J 2006 Frontiers in crystal engineering (Chichester: John Wiley)Google Scholar

Copyright information

© Indian Academy of Sciences 2010

Authors and Affiliations

  1. 1.School of ChemistryUniversity of HyderabadHyderabadIndia

Personalised recommendations