Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Supramolecular chemistry and crystal engineering

Abstract

Advances in supramolecular chemistry and crystal engineering reported from India within the last decade are highlighted in the categories of new intermolecular interactions, designed supramolecular architectures, network structures, multi-component host-guest systems, cocrystals, and polymorphs. Understanding self-assembly and crystallization through X-ray crystal structures is illustrated by two important prototypes — the large unit cell of elusive saccharin hydrate, Na16(sac)16 · 30H2O, which contains regular and irregular domains in the same structure, and by the Aufbau build up of zinc phosphate framework structures, e.g. ladder motif in [C3N2H12][Zn(HPO4)2] to layer structure in [C3N2H12][Zn2(HPO4)3] upon prolonged hydrothermal conditions. The pivotal role of accurate X-ray diffraction in supramolecular and structural studies is evident in many examples. Application of the bottomup approach to make powerful NLO and magnetic materials, design of efficient organogelators, and crystallization of novel pharmaceutical polymorphs and cocrystals show possible future directions for interdisciplinary research in chemistry with materials and pharmaceutical scientists. This article traces the evolution of supramolecular chemistry and crystal engineering starting from the early nineties and projects a center stage for chemistry in the natural sciences.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Lehn J-M 1978 Pure Appl. Chem. 50 871–892

  2. 2.

    Lehn J-M 1995 Supramolecular chemistry: Concepts and perspectives (Weinheim: VCH)

  3. 3.

    Steed J W and Atwood J L 2000 Supramolecular chemistry (Chichester: Wiley)

  4. 4.

    Schalley C A (ed.) 2007 Analytical methods in supramolecular chemistry (Weinheim: Wiley-VCH)

  5. 5.

    Schmidt G M J 1971 Pure Appl. Chem. 27 647

  6. 6.

    Desiraju G R 1989 Crystal engineering: The design of organic solids (Amsterdam: Elsevier)

  7. 7.

    Desiraju G R and Steiner T 1999 The weak hydrogen bond in structural chemistry and biology (Oxford: OUP)

  8. 8.

    Banerjee R, Desiraju G R, Mondal R and Howard J A K 2004 Chem. Eur. J. 10 3373

  9. 9.

    Balamurugan V, Hundal M S and Mukherjee R 2004 Chem. Eur. J. 10 1683

  10. 10.

    Desiraju G R 2002 Acc. Chem. Res. 35 565

  11. 11.

    Munshi P and Guru Row T N 2005 CrystEngComm 7 608

  12. 12.

    Ranganathan A, Kulkarni G U and Rao C N R 2003 J. Phys. Chem. A107 6073

  13. 13.

    Vishweshwar P, Babu N J, Nangia A, Mason S A, Puschmann H, Mondal R and Howard J A K 2004 J. Phys. Chem. A108 9406

  14. 14.

    Desiraju G R 1995 Angew. Chem., Int. Ed. Engl. 34 2311

  15. 15. (a)

    Zerkowski J A, Mathias J P and Whitesides G M 1994 J. Am. Chem. Soc. 116 4304

  16. 15. (b)

    Palacin S, Chin D N, Simanek E E, MacDonald J C, Whitesides G M, McBride M T and Palmore T R 1997 J. Am. Chem. Soc. 119 11807

  17. 16. (a)

    Vangala V R, Bhogala B R, Dey A, Desiraju G R, Broder C K, Smith P S, Mondal R, Howard J A K and Wilson C C 2003 J. Am. Chem. Soc. 125 14495

  18. 16. (b)

    Dey A, Kirchner M T, Vangala V R, Desiraju G R, Mondal R and Howard J A K 2005 J. Am. Chem. Soc. 127 10545

  19. 17.

    Moorthy J N, Natarajan R, Mal P and Venugopalan P 2002 J. Am. Chem. Soc. 124 6530

  20. 18. (a)

    George S, Nangia A, Lam C-K, Mak T C W and Nicoud J-F 2004 Chem. Commun. 1202

  21. 18. (b)

    Reddy L S, Chandran S K, George S, Babu N J and Nangia A 2007 Cryst. Growth Des. 7 2675

  22. 19. (a)

    Sarkar M and Biradha M 2006 Cryst. Growth Des. 6 202

  23. 19. (b)

    Rajput L, Singha S and Biradha K 2007 Cryst. Growth Des. 7 2788

  24. 20.

    Jeffrey G A and Saenger W 1991 Hydrogen bonding in biological structures (Berlin: Springer-Verlag)

  25. 21.

    Mehta G, Sen S and Ramesh S S 2007 Eur. J. Org. Chem. 423

  26. 22. (a)

    Lehmler H-J, Robertson L W, Parkin S and Brock C P 2002 Acta Crystallogr. B58 140

  27. 22. (b)

    Brock C P 2002 Acta Crysallogr. B58 1025

  28. 23.

    Reddy P A N, Nethaji M and Chakravarty A R 2003 Inorg. Chem. Comm. 6 698

  29. 24.

    Sarma R J and Baruah J B 2007 Cryst. Growth Des. 7 989

  30. 25.

    Aitipamula S and Nangia A 2005 Chem. Commun. 3159

  31. 26.

    Supriya S and Das S K 2007 J. Am. Chem. Soc. 129 3464

  32. 27.

    Santra R and Biradha K 2008 CrystEngComm. 10 1524

  33. 28.

    Sarkar M and Biradha K 2007 Cryst. Growth Des. 7 1318

  34. 29.

    Chandrasekhar V, Gopal K, Nagendran S, Steiner A and Zacchini S 2006 Cryst. Growth Des. 6 267

  35. 30. (a)

    Bhogala B R, Basavoju S and Nangia A 2005 Cryst. Growth Des. 5 1683

  36. 30. (b)

    Bhogala B R and Nangia A 2008 New J. Chem. 32 800

  37. 31.

    Arora K K and Pedireddi V R 2003 J. Org. Chem. 68 9177

  38. 32.

    Jacques J, Collet A and Wilen S H 1981 Enantiomers, racemates and resolution (New York: Wiley-Interscience)

  39. 33.

    Brock C P and Duncan L L 1994 Chem. Mater. 6 1307

  40. 34.

    Balamurugan V and Mukherjee R 2005 CrystEng-Comm. 7 337

  41. 35.

    Mandal S and Natarajan S 2002 Cryst. Growth Des. 2 665

  42. 35. (b)

    Natarajan S, Mandal S, Mahata P, Rao V K, Ramaswamy P, Banerjee A, Paul A K and Ramya K V 2006 J. Chem. Sci. 118 525

  43. 36.

    Rao C N R, Natarajan S, Choudhary A, Neeraj S and Ayi A A 2001 Acc. Chem. Res. 34 80

  44. 37.

    The News Sta. 2004 Splish, splash; Science 306 2013

  45. 38.

    Nangia A 2007 In Encyclopaedia of supramolecular chemistry (eds) J L Atwood and J W Steed (New York: Marcel Dekker) 1 1–9; www.informaworld.com/10.1081/E-ESMC-1200 23838

  46. 39.

    Mascal M, Infantes L and Chisholm J 2006 Angew. Chem. Int. Ed. 45 32

  47. 40. (a)

    Jovanovski G and Kamenar B 1982 Cryst. Struct. Commun. 11 247

  48. 40. (b)

    Naumov P, Jovanovski G, Abbrent S and Tergenius L-E 2000 Thermochim. Acta 359 123

  49. 41.

    Banerjee R, Bhatt P M, Kirchner M T and Desiraju G R 2005 Angew. Chem. Int. Ed. 44 2515

  50. 42.

    Naumov P, Jovanovski G, Grupče, Kaitner B, Rae A D and Ng S W 2005 Angew. Chem. Int. Ed. 44 1251

  51. 43.

    Roy S, Banerjee R, Nangia A and Kruger G J 2006 Chem. Eur. J. 12 3777

  52. 44.

    Choudhury A R, Islam K, Kirchner M T, Mehta G and Guru Row T N 2004 J. Am. Chem. Soc. 126 12274

  53. 45.

    Vishweshwar P, McMahon J A, Oliveira M, Peterson M L and Zaworotko M J 2005 J. Am. Chem. Soc. 127 16802

  54. 46.

    Bond A D, Boese R and Desiraju G R 2007 Angew. Chem. Int. Ed. 46 618

  55. 47.

    Cambridge Crystallographic Data Center, www.ccdc.cam.ac.uk. The current release of the CSD (Ver. 5.30, November 2008, ConQuest 1.11) contains over 450,000 entries

  56. 48. (a)

    Almarsson Ö and Zaworotko M J 2004 Chem. Commun. 1889

  57. 48. (b)

    Aakeröy C B and Salmon D J 2005 CrystEngComm. 7 439

  58. 48. (c)

    Trask A V and Jones W 2005 Top. Curr. Chem. 254 41

  59. 48. (d)

    Meanwell N A 2008 Ann. Rep. Med. Chem. 43 373

  60. 49. (a)

    Perumalla S R, Suresh E and Pedireddi V R 2005 Angew. Chem. Int. Ed. 44 7753

  61. 49. (b)

    Thomas R and Kulkarni G U 2008 J. Mol. Struct. 873 160

  62. 50. (a)

    Sarma B, Nath N K, Bhogala B R and Nangia A 2009 Cryst. Growth Des. 9 1546

  63. 50. (b)

    Shattock T R, Arora K K, Vishweshwar P and Zaworotko M J 2008 Cryst. Growth Des. 8 4533

  64. 51.

    Babu N J, Reddy L S and Nangia A 2007 Amide-Noxide heterosynthon and amide dimer homosynthon in cocrystals of carboxamide drugs and pyridine-Noxides. Mol. Pharmaceutics 4 417–434

  65. 52. (a)

    Rath H, Sankar J, PrabhuRaja V, Chandrashekar T K, Nag A and Goswami D 2005 J. Am. Chem. Soc. 127 11608

  66. 52. (b)

    Gokulnath S and Chandrashekar T K 2008 J. Chem. Sci. 120 137

  67. 53.

    Prakash M J, Raghavaiah P, Krishna Y S R and Radhakrishnan T P 2008 Angew. Chem. Int. Ed. 47 3969

  68. 54.

    Ballabh A, Trivedi D R and Dastidar P 2006 Chem. Mater. 18 3795

  69. 55.

    Bhattacharya S and Pal A 2008 J. Phys. Chem. B112 4918

  70. 56. (a)

    Nonappa and Maitra U 2008 Org. Biomol. Chem. 6 657

  71. 56. (b)

    Mukhopadhyay S, Maitra I, Ira, Krishnamoorthy G, Schmidt J and Talmon Y 2004 J. Am. Chem. Soc. 126 15905

  72. 57.

    Behera J N and Rao C N R 2006 J. Am. Chem. Soc. 128 9334

  73. 58. (a)

    Moorthy J N, Venkatakrishnan P, Natarajan P, Huang D-F and Chow T J 2008 J. Am. Chem. Soc. 130 17320

  74. 58. (b)

    Moorthy J N, Venkatakrishanan P, Huang D-F and Chow T J 2008 Chem. Commun.2146

  75. 59.

    Ball P 2009 Chem. World 58

  76. 60.

    Feynman R 1959 There’s plenty of room at the bottom (Caltech: American Physical Society) http://www.its.caltech.edu/~feynman/plenty.html

  77. 61.

    Pepinsky R 1955 Phys. Rev. 100 971

  78. 63.

    Halford B 2009 Chem. Engg. News March 30, 34

  79. 64.

    Desiraju G R 2005 Curr. Sci. 88 374

  80. 65.

    Seebach D 1990 Angew. Chem. Int. Ed. Engl. 29 1320

  81. 66.

    Lehn J-M (Founding ed.) 1994–2004 Perspectives in supramolecular chemistry, Vols. 1–8 (Chichester: John Wiley)

  82. 67. (a)

    Tiekink E R T and Vittal J J 2006 Frontiers in crystal engineering (Chichester: John Wiley)

Download references

Author information

Correspondence to Ashwini Nangia.

Additional information

Reproduced from ‘Current Trends in Science’ Platinum Jubilee Special Publication, Indian Academy of Sciences, Bangalore, 2009, pp. 35–51 with minor editorial changes

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nangia, A. Supramolecular chemistry and crystal engineering. J Chem Sci 122, 295–310 (2010). https://doi.org/10.1007/s12039-010-0035-6

Download citation

Keywords

  • Crystallization
  • hydrogen bond
  • materials
  • nanoscience
  • pharmaceutical
  • self-assembly