Skip to main content
Log in

Statistical theory of neutral protein evolution by random site mutations

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Understanding the features of the protein conformational space represents a key component to characterize protein structural evolution at the molecular level. This problem is approached in a twofold manner; simple lattice models are used to represent protein structures with the ability of a protein sequence to fold into the lowest energy native conformation, quantified as the foldability, which measures the fitness of the sequence. Alternatively, a self-consistent mean-field based theory is developed to evaluate the protein neutrality through random single-point and multiple-point mutations by calculating the pair-wise probability profile of the amino acid residues in a library of sequences, consistent with a particular foldability criterion. The theory predicts the change in sequence plasticity with the foldability criterion and also correlates the effect of hydrophobic residues on the variation of the free energy surface of the protein as a function of the number of cumulative mutations. The results obtained from the theory are compared with the exact enumeration results of 3 × 3 × 3 lattice protein and also with some small real proteins chosen from the protein databank. An excellent match of the results obtained from theory and exact enumeration with those of real proteins validates the range of applicability of the theory. The theory may provide a new perspective in de novo protein design, in-vivo/in-vitro protein evolution and site-directed mutagenesis experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schuster P, Fontana W, Stadler P F and Hofacker I L 1994 Proc. Roy. Soc. London B255 279

    Google Scholar 

  2. Govindarajan S and Goldstein R A 1997 Biopolymers 42 427

    Article  CAS  Google Scholar 

  3. Bornberg-Bauer E and Chan H S 1999 Proc. Natl. Acad. Sci. USA 96 10689

    Article  CAS  Google Scholar 

  4. vanNimwegen E, Crutchfiels J P and Huynen M 1999 Proc. Natl. Acad. Sci. USA 96 9716

    Article  Google Scholar 

  5. Bastolla U, Porto M, Roman H E and Vendruscolo M 2002 Phys. Rev. Lett. 89 208101

    Article  CAS  Google Scholar 

  6. Thomas J, Martin O C and Wagner A 2008 BMC Bioinformatics 9 464

    Article  CAS  Google Scholar 

  7. Reidys C, Stadler P F and Schuster P 1997 Bull. Math. Biol. 59 339

    Article  CAS  Google Scholar 

  8. Schuster P 1995 J. Biotechnol. 41 239

    Article  CAS  Google Scholar 

  9. Sali A, Shaknovich E and Karplus M 1994 J. Mol. Biol. 235 1614

    Article  CAS  Google Scholar 

  10. Shakhnovich E I and Gutin A M 1990 J. Chem. Phys. 93 5967

    Article  CAS  Google Scholar 

  11. Bryngelson J D and Wolynes P G 1987 Proc. Natl. Acad. Sci. USA 84 7524

    Article  CAS  Google Scholar 

  12. Martinez M A, Pezo V, Marliere P and Wain-Hobson S 1996 The EMBO J. 15 1203

    CAS  Google Scholar 

  13. Shortle D and Lin B 1985 Genetics 110 539

    CAS  Google Scholar 

  14. Pakula A A, Young V B and Sauer R T 1986 Proc. Natl. Acad. Sci. USA 83 8829

    Article  CAS  Google Scholar 

  15. Guo H H, Choe J and Loeb L A 2004 Proc. Natl. Acad. Sci. USA 101 9205

    Article  CAS  Google Scholar 

  16. Bloom J D, Labthavikul S T, Otey C R and Arnold F H 2006 Proc. Natl. Acad. Sci. USA 103 5869

    Article  CAS  Google Scholar 

  17. Serrano L, Day A G and Fersht A R 1993 J. Mol. Biol. 233 305

    Article  CAS  Google Scholar 

  18. King J L and Jukes T H 1969 Science 164 788

    Article  CAS  Google Scholar 

  19. Kimura M 1983 The neutral theory of molecular evolution (Cambridge University Press)

  20. Bloom J D, Silberg J J, Wilke C O, Drummond D A, Adami C and Arnold F H 2005 Proc. Natl. Acad. Sci. USA 606 102

    Google Scholar 

  21. Go N 1983 Annu. Rev. Biophys. Bioeng. 12 183

    Article  CAS  Google Scholar 

  22. Li H, Helling R, Tang C and Wingreen N 1996 Science 273 666

    Article  CAS  Google Scholar 

  23. Russ W P and Ranganathan R 2002 Curr. Opin. Struct. Biol. 12 447

    Article  CAS  Google Scholar 

  24. Go N and Taketomi H 1978 Proc. Natl. Acad. Sci. USA 75 559

    Article  CAS  Google Scholar 

  25. Chan H S and Dill K A 1991 Annu. Rev. Biophys. Biophys. Chem. 20 447

    Article  CAS  Google Scholar 

  26. Shaknovich E I 1994 Phys. Rev. Lett. 72 3907

    Article  Google Scholar 

  27. Socci N D and Onuchic J N 1995 J. Chem. Phys. 103 4732

    Article  CAS  Google Scholar 

  28. Abkevich V I, Gutin A M and Shakhnovich E I 1995 Protein. Sci. 4 1167

    CAS  Google Scholar 

  29. Hao M-H and Scheraga H A 1996 Proc. Natl. Acad. Sci. USA 93 4984

    Article  CAS  Google Scholar 

  30. Zou J and Saven J G 2000 J. Mol. Biol. 296 281

    Article  CAS  Google Scholar 

  31. Biswas P, Zou J and Saven J G 2005 J. Chem. Phys. 123 154908

    Article  CAS  Google Scholar 

  32. Miyazawa S and Jernigan R L 1985 Macromolecules 218 534

    Article  Google Scholar 

  33. Sippl M J 1990 J. Mol. Biol. 213 859

    Article  CAS  Google Scholar 

  34. Goldstein R, Luthey-Schulten Z Z and Wolynes P G 1992 Proc. Natl. Acad. Sci. USA 89 9029

    Article  CAS  Google Scholar 

  35. Deutsch J M and Kurosky T 1996 Phys. Rev. Lett. 76 323

    Article  CAS  Google Scholar 

  36. Saven J G 2003 J. Chem. Phys. 118 6133

    Article  CAS  Google Scholar 

  37. Morita T and Tanaka T 1966 Phys. Rev. 145 288

    Article  CAS  Google Scholar 

  38. Pathria R K 1972 Statistical mechanics (Pergamon Press)

  39. Shaknovich E I and Gutin A 1990 J. Chem. Phys. 93 5967

    Article  Google Scholar 

  40. Go N 1975 Int. J. Pept. Protein Res. 7 313

    CAS  Google Scholar 

  41. Dill K A, Bromberg S, Yue K S, Fiebig K M, Yee D P, Thomas P D and Chan H S 1995 Protein Sci. 4 561

    Article  CAS  Google Scholar 

  42. Saven J G 2001 Chem. Rev. (Washington DC) 101 3113

    CAS  Google Scholar 

  43. Bhattacherjee A and Biswas P 2009 J. Phys. Chem. B (ASAP), DOI 10.1021/jp810515s

  44. Dosztanyi Z, Csizmok V, Tompa P and Simon I 2005 J. Mol. Biol. 347 827

    Article  CAS  Google Scholar 

  45. Sharp K A, Nicholls A, Friedmann R and Honig B 1991 Biochemistry 30 9686

    Article  CAS  Google Scholar 

  46. Levitt M 1976 J. Mol. Biol. 104 59

    Article  CAS  Google Scholar 

  47. Zhou H and Zhou Y 2002 Proteins: Struct. Funct. Genet. 49 483

    Article  CAS  Google Scholar 

  48. Fauchere J-L and Pliska V 1983 Eur. J. Med. Chem. (Chim. Ther.) 18 369

    CAS  Google Scholar 

  49. Taverna D M and Goldstein R A 2002 J. Mol. Biol. 315 479

    Article  CAS  Google Scholar 

  50. Oliveira L C, Silva R T H, Leite V B P and Chahine J 2006 J. Chem. Phys. 125 084904

    Article  CAS  Google Scholar 

  51. Wilke C O, Bloom J D, Drummond D A and Raval A 2005 Biophys. J. 89 3714

    Article  CAS  Google Scholar 

  52. Sano K-I, Maeda K, Taniguchi H and Maeda Y 2000 Eur. J. Biochem. 267 4870

    Article  CAS  Google Scholar 

  53. Miao J, Klein-Seetharaman J and Meirovitch H 2004 J. Mol. Biol. 344 797

    Article  CAS  Google Scholar 

  54. Chan K A and Dill H S 1994 J. Chem. Phys. 100 9238

    Article  Google Scholar 

  55. Hamming R W 1950 Bell. Syst. Tech. J. 29 147

    Google Scholar 

  56. Hamming R W 1986 Coding and information theory (Englewood Cliffs: Prentice Hall) 2nd edn

    Google Scholar 

  57. Hecht M H, Hehir K M, Nelson H C M, Sturtevant J M and Sauer R T 1985 J. Cell. Biochem. 29 217

    Article  CAS  Google Scholar 

  58. Hecht M H, Sturtevant J M and Sauer R T 1986 Proteins. Struct. Funct. Genet. 1 43

    Article  CAS  Google Scholar 

  59. Irback A and Troein C 2002 J. Biol. Phys. 28 1

    Article  Google Scholar 

  60. Chan H S and Dill K A K 1996 Proteins: Struct. Funct. Genet. 24 335

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parbati Biswas.

Additional information

Dedicated to the memory of the late Professor S K Rangarajan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacherjee, A., Biswas, P. Statistical theory of neutral protein evolution by random site mutations. J Chem Sci 121, 887–896 (2009). https://doi.org/10.1007/s12039-009-0105-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-009-0105-9

Keywords

Navigation