Skip to main content

Advertisement

Log in

Distance dependence of fluorescence resonance energy transfer

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Deviations from the usual R −6 dependence of the rate of fluorescence resonance energy transfer (FRET) on the distance between the donor and the acceptor have been a common scenario in the recent times. In this paper, we present a critical analysis of the distance dependence of FRET, and try to illustrate the non-R −6 type behaviour of the rate for the case of transfer from a localized electronic excitation on the donor, a dye molecule to three different energy acceptors with delocalized electronic excitations namely, graphene, a two-dimensional semiconducting sheet and the case of such a semiconducting sheet rolled to obtain a nanotube. We use simple analytic models to understand the distance dependence in each case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lakowicz J R 2006 Principles of fluorescence spectroscopy (New York: Springer)

    Book  Google Scholar 

  2. May V and Kuhn O 2000 Charge and energy transfer dynamics in molecular systems (Wiley-VCH)

  3. Förster T 1948 Ann. Phys. 2 55

    Article  Google Scholar 

  4. Valeur B 2002 Molecular fluorescence (New York: Wiley-VCH)

    Google Scholar 

  5. Stryer L and Haugland R P 1967 Proc. Natl. Acad. Sci. USA 58 719

    Article  CAS  Google Scholar 

  6. Swathi R S and Sebastian K L 2008 J. Chem. Phys. 129 054703

    Article  CAS  Google Scholar 

  7. Swathi R S and Sebastian K L 2009 J. Chem. Phys. 130 086101

    Article  CAS  Google Scholar 

  8. Wallace P R 1947 Phys. Rev. 71 622

    Article  CAS  Google Scholar 

  9. Katsnelson M I 2007 Mater. Today 10 20

    Article  CAS  Google Scholar 

  10. Shung Kenneth W K 1986 Phys. Rev. B34 979

    Google Scholar 

  11. Margulis V A, Muyumin E E and Gaiduk E A 2008 Phys. Rev. B77 035425

    Google Scholar 

  12. Swathi R S and Sebastian K L (unpublished)

  13. Balassis A and Gumbs G 2006 Phys. Rev. B74 045420

    Google Scholar 

  14. Gumbs G and Balassis A 2005 Phys. Rev. B71 235410

    Google Scholar 

  15. Jackson J D 1975 Classical electrodynamics (New York: Wiley Eastern Limited)

    Google Scholar 

  16. Wong K F, Bagchi B and Rossky P J 2004 J. Phys. Chem. A108 5752

    Google Scholar 

  17. Sönnichsen C, Reinhard B M, Liphardt J and Alivisatos A P 2005 Nat. Biotechnol. 23 741

    Article  Google Scholar 

  18. Achermann M, Petruska M A, Kos S, Smith D L, Koleske D D and Klimov V I 2004 Nature 429 642

    Article  CAS  Google Scholar 

  19. Martinez P L H and Govorov A O 2008 Phys. Rev. B78 035314

    Google Scholar 

  20. Alivisatos A P, Valdeck D H and Harris C B 1985 J. Chem. Phys. 82 541

    Article  CAS  Google Scholar 

  21. Chance R R, Prock A and Silbey R 1978 Adv. Chem. Phys. 37 1

    Article  CAS  Google Scholar 

  22. Campion A, Gallo A R, Harris C B, Robota H J and Whitmore P M 1980 Chem. Phys. Lett. 73 447

    Article  CAS  Google Scholar 

  23. Persson B N J and Lang N D 1982 Phys. Rev. B26 5409

    Google Scholar 

  24. Larkin I A, Stockman M I, Achermann M and Klimov V I 2004 Phys. Rev. B69 121403(R)

    Google Scholar 

  25. Lyo S K 2006 Phys. Rev. B73 205322

    Google Scholar 

  26. Itskos G, Heliotis G, Lagoudakis P G, Lupton J, Barradas N P, Alves E, Pereira S, Watson I M, Dawson M D, Feldmann J, Murray R and Bradley D D C 2007 Phys. Rev. B76 035344

    Google Scholar 

  27. Hill J, Heriot S Y, Worsfold O, Richardson T H and Fox A M 2004 Phys. Rev. B69 041303 (R)

    Google Scholar 

  28. Kos S, Achermann M, Klimov V I and Smith D L 2005 Phys. Rev. B71 205309

    Google Scholar 

  29. Agranovich V M, Basko D M, La Rocca G C and Bassani F 1998 J. Phys.: Condens. Matter 10 9369

    Article  CAS  Google Scholar 

  30. Yun C S, Javier A, Jennings T, Fisher M, Hira S, Peterson S, Hopkins B, Reich N O and Strouse G F 2005 J. Am. Chem. Soc. 127 3115

    Article  CAS  Google Scholar 

  31. Swathi R S and Sebastian K L 2007 J. Chem. Phys. 126 234701

    Article  CAS  Google Scholar 

  32. Bhowmick S, Saini S, Shenoy V B and Bagchi B 2006 J. Chem. Phys. 125 181102

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. L. Sebastian.

Additional information

Dedicated to the memory of the late Professor S K Rangarajan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swathi, R.S., Sebastian, K.L. Distance dependence of fluorescence resonance energy transfer. J Chem Sci 121, 777–787 (2009). https://doi.org/10.1007/s12039-009-0092-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-009-0092-x

Keywords

Navigation