Journal of Chemical Sciences

, 121:735 | Cite as

Core-shell Au/Ag nanoparticles embedded in silicate sol-gel network for sensor application towards hydrogen peroxide

Article

Abstract

The electrocatalytic activity of core-shell Au100−xAgx (x = 15, 27, 46, and 60) bimetallic nanoparticles embedded in methyl functionalized silicate MTMOS network towards the reduction of hydrogen peroxide was investigated by using cyclic voltammetry and chronoamperometric techniques. Core-shell Au/Ag bimetallic nanoparticles were characterized by absorption spectra and HRTEM. The MTMOS silicate sol-gel embedded Au73Ag27 core-shell nanoparticles modified electrode showed better synergistic electrocatalytic effect towards the reduction of hydrogen peroxide when compared to monometal MTMOS-Aunps and MTMOS-Agnps modified electrodes. These modified electrodes were studied without immobilizing any enzyme in the MTMOS sol-gel matrix. The present study highlights the influence of molar composition of Ag nanoparticles in the Au/Ag bimetallic composition towards the electrocatalytic reduction and sensing of hydrogen peroxide in comparison to monometal Au and Ag nanoparticles.

Keywords

Core-shell Au/Ag nanoparticles modified electrode electrocatalysis hydrogen peroxide sensor 

References

  1. 1.
    Michael S, Nashner A, Frenkel I, David L A, John, R S and Ralph G N 1997 J. Am. Chem. Soc. 119 7760CrossRefGoogle Scholar
  2. 2.
    Lehui L, Haishui W, Yonghui Z, Shiquan X, Hongjie Z, Jiawen H and Bing Z 2002 Chem. Commun. 2 144Google Scholar
  3. 3.
    Alain R, Jurgen S and Henri P 2002 Chem. Rev. 102 3757CrossRefGoogle Scholar
  4. 4.
    Park J Y, Zhang Y, Grass M, Zhang T and Somorjai G A 2008 Nano Lett. 8 673CrossRefGoogle Scholar
  5. 5.
    Toshima N and Wang Y 1994 Langmuir 10 4574CrossRefGoogle Scholar
  6. 6.
    Yang Y, Khalil A A and Lisa M W 2003 Dalton Trans. 22 4288CrossRefGoogle Scholar
  7. 7.
    Daniel M C and Astruc D 2004 Chem. Rev. 104 293CrossRefGoogle Scholar
  8. 8.
    Tasis D, Tagmatarchis N, Bianco A and Prato M 2006 Chem. Rev. 106 1105CrossRefGoogle Scholar
  9. 9.
    Thomas K G and Kamat P V 2003 Acc. Chem. Res. 36 888CrossRefGoogle Scholar
  10. 10.
    Mayya K S, Schoeler B and Caruso F 2003 Adv. Funct. Mater. 13 183CrossRefGoogle Scholar
  11. 11.
    Shirlaine K and Peter S 2007 J. Am. Chem. Soc. 129 12624CrossRefGoogle Scholar
  12. 12.
    Rivas L, Cortes S S, Ramos V G and Morcillo G 2000 Langmuir 16 9722CrossRefGoogle Scholar
  13. 13.
    Joseph W 2005 Analyst 4 421Google Scholar
  14. 14.
    Lev O, Tsionsky M, Rabinovich L, Glezer V, Sampath S, Pankratov I and Gun J 1995 Anal. Chem. 67 22ACrossRefGoogle Scholar
  15. 15.
    Dave B C, Dunn B, Valentine J S and Zink J I 1994 Anal. Chem. 66 1120ACrossRefGoogle Scholar
  16. 16.
    Soo B K and Fang C 2002 Anal. Chem. 74 5734CrossRefGoogle Scholar
  17. 17.
    Lin J and Brown C W 1997 Anal. Chem. 16 200Google Scholar
  18. 18.
    Cushing B L, Kolesnichenko V L and O’Connor C J 2004 Chem. Rev. 104 3893CrossRefGoogle Scholar
  19. 19.
    Holstrom S D and Cox J A 2000 Anal. Chem. 72 3191CrossRefGoogle Scholar
  20. 20.
    Rubianes M D and Rivas G A 2003 Electrochem. Commun. 5 689CrossRefGoogle Scholar
  21. 21.
    Rubianes M D and Rivas G A 2005 Electroanalysis 17 73CrossRefGoogle Scholar
  22. 22.
    Tetsu T and Tadashi W 1991 Anal. Chem. 63 1580CrossRefGoogle Scholar
  23. 23.
    Gao F, Yuan R, Chai Y, Tang M, Cao S and Chen S 2007 Colloids and surfaces: A physicochemical and engineering aspects 295 223CrossRefGoogle Scholar
  24. 24.
    Wu S, Zhao H, Ju H, Shi C and Zhao J 2006 Electrochem. Commun. 8 1197CrossRefGoogle Scholar
  25. 25.
    Yang W, Li Y, Bai Y and Sun C 2006 Sensors and Actuators B115 42Google Scholar
  26. 26.
    Hill H A 1996 Coord. Chem. Rev. 151 233Google Scholar
  27. 27.
    Wang J, Musameh M and Lin Y 2003 J. Am. Chem. Soc. 125 2408CrossRefGoogle Scholar
  28. 28.
    Li X, Heryadi D and Gewirth A A 2005 Langmuir 21 9251CrossRefGoogle Scholar
  29. 29.
    Cooper J M, Greenough K R and Mencil C J 1993 J. Electroanal. Chem. 347 267CrossRefGoogle Scholar
  30. 30.
    Kim J and Gewirth A A 2005 J. Phys. Chem. B109 9684Google Scholar
  31. 31.
    Frenz G 1973 Nature 241 20Google Scholar
  32. 32.
    Lee P C and Meisel D 1982 J. Phys. Chem. 86 3391CrossRefGoogle Scholar
  33. 33.
    Sbkhoo K 2002 Anal. Chem. 74 5734CrossRefGoogle Scholar
  34. 34.
    Maduraiveeran G and Ramaraj R 2007 J. Electroanal. Chem. 52 58Google Scholar
  35. 35.
    Mie G 1908 Ann. Phys. 25 377CrossRefGoogle Scholar
  36. 36.
    Benito R G, Ana S I, Micheal G, Luis M and Liz M 2004 Faraday Discuss. 125 133CrossRefGoogle Scholar
  37. 37.
    Zhang L, Jiang X, Wang E and Dong S 2005 Biosens. Bioelectron. 21 337CrossRefGoogle Scholar
  38. 38.
    Feng J, Zhao G, Xu J and Chen H 2005 Anal. Biochem. 342 280CrossRefGoogle Scholar
  39. 39.
    Zeng J, Yang J, Lee J Y and Zhou W 2006 J. Phys. Chem. B110 24606Google Scholar

Copyright information

© Indian Academy of Sciences 2009

Authors and Affiliations

  1. 1.Centre for Photoelectrochemistry, School of chemistryMadurai Kamaraj UniversityMaduraiIndia

Personalised recommendations