Skip to main content
Log in

Graham’s law of diffusion: Quantum analogy and non-ideality

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

We focus attention on two equivalent forms of Graham’s law of diffusion that is valid for an ideal gas mixture. This equivalence is shown to be lost by the empirical equations of state in presence of an attractive nonideality. The modified forms are noted. We then construct a simple quantum mechanical model to simulate these results and obtain a one-to-one correspondence. We see how these equations of interest may be extended to D-dimensions. By employing the quantum model, we next observe the equivalence of the results found above with those obtained via statistical mechanics. As an added advantage, we demonstrate that the virial theorem for confined quantum stationary states retains its validity in the statistical domain too, though here the averaging scheme is correspondingly different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bender C M, Brody D C and Meister B K 2000 J. Phys. A33 4427

    Google Scholar 

  2. Bender C M, Brody D C and Meister B K 2002 Proc. R. Soc. Lond. A458 1519

    Google Scholar 

  3. Bhattacharyya K and Mukhopadhyay S 2001 J. Phys. A34 1529

    Google Scholar 

  4. Mukhopadhyay S and Bhattacharyya K 2002 Int. J. Quantum Chem. 86 330

    Article  CAS  Google Scholar 

  5. Lin B and Chen J 2003 Phys. Rev. E67 046105; Quan H T, Liu Y, Sun C P and Nori F 2007 Phys. Rev. E76 031105

    Google Scholar 

  6. Borowski P, Gemmer J and Mahler G 2003 Europhys. Lett. 62 629

    Article  CAS  Google Scholar 

  7. Fröman P O, Yngve S and Fröman N 1987 J. Math. Phys. 28 1813

    Article  Google Scholar 

  8. Goldman S and Joslin C 1992 J. Phys. Chem. 96 6021; Pupyshev V I and Scherbinin A V 1998 Chem. Phys. Lett. 295 217

    Article  CAS  Google Scholar 

  9. B-Waz D, Diercksen, G H F and Klobukowski M, 2001 Chem. Phys. Lett. 349 215

    Article  Google Scholar 

  10. Sako T and Diercksen, G H F 2003 J. Phys. B36 3743; W-Fang X 2008 Commun. Theor. Phys. (Beijing: China) 49 1287

    Google Scholar 

  11. Barton G, Bray A J and Mckane A J 1990 Am. J. Phys. 58 751

    Article  Google Scholar 

  12. Costa L S, Prudente F V, Acioli P H, S-Neto J J and Vianna J D M 1999 J. Phys. B32 2461

    Google Scholar 

  13. A-Navarro V C, Koo E L and Zimerman A H 1980 J. Phys. A13 3585; Campoy G, Aquino N and Granados V D 2002J. Phys. A35 4903

    Google Scholar 

  14. Vargas R, Garza J and Vela A 1996 Phys. Rev. E53 1954; Núñez M A 2003 Phys. Rev. E68 016703

    Google Scholar 

  15. Marin J L and Cruz S A 1988 Am. J. Phys. 56 1134

    Article  Google Scholar 

  16. Gueorguiev V G, Rau A R P and Draayer J P 2006 Am. J. Phys. 74 394

    Article  Google Scholar 

  17. Montgomery Jr H E, Aquino N A and Sen K D 2007 Int. J. Quantum Chem. 107, 798

    Article  CAS  Google Scholar 

  18. Al-Jaber S M 2008 Int. J. Theo. Phys. 47 1853

    Article  Google Scholar 

  19. I-Pallas N, Racoveanu O and Vlad V I 2008 Roman. Rep. Phys. 60 493

    Google Scholar 

  20. Hylleraas E A 1929 Z. Phys. 54 347; Fock V A 1930 Z. Phys. 63 855; Lowdin P O 1959 J. Mol. Spectr. 3 46

    Article  CAS  Google Scholar 

  21. Hellmann H 1933 Z. Phys. 85 180; Hellmann H 1935; Acta Physicochem. USSR I 6 913; Hellmann H 1936 Acta Physicochem. USSR IV 2 225; Feynman R P 1939 Phys. Rev. 56 340

    Article  CAS  Google Scholar 

  22. Thomas J E 2008 arXiv:0803.1647 v1 [cond-mat.statmech] 11 Mar

  23. Moelwyn-Hughes E A 1961 Physical chemistry (Oxford: Pergamon Press), 2nd edn pp 40–41

    Google Scholar 

  24. Molina M I 1996 Am. J. Phys. 64 503; Gutiérrez G and Yáñez J 1997 Am. J. Phys. 65 739; Pathria R K 1998 Am. J. Phys. 66 1080

    Article  Google Scholar 

  25. Stutz C 1968 Am. J. Phys. 36 826; Fox K 1971 Am. J. Phys. 39 116

    Article  Google Scholar 

  26. Callen H B 1985 Thermodynamics and an introduction to thermostatics (New York: John Wiley & Sons) 2nd edn, Chapter 20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Bhattacharyya.

Additional information

Dedicated to the memory of the late Professor S K Rangarajan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, C., Bera, N. & Bhattacharyya, K. Graham’s law of diffusion: Quantum analogy and non-ideality. J Chem Sci 121, 607–615 (2009). https://doi.org/10.1007/s12039-009-0074-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-009-0074-z

Keywords

Navigation