Skip to main content
Log in

Tris-(1,3-diaryltriazenide) complexes of rhodium — Synthesis, structure and, spectral and electrochemical properties

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Reaction of 1,3-diaryltriazenes (abbreviated in general as HL-R, where R stands for the para-substituent in the aryl fragment and H stands for the dissociable hydrogen atom, R = OCH3, CH3, H, Cl, NO2) with [Rh(PPh3)2(CO)Cl] in ethanol in the presence of NEt3 produces a series of tris-diaryltriazenide complexes of rhodium of type [Rh(L-R)3], where the triazenes are coordinated to rhodium as monoanionic, bidentate N,N-donors. Structure of the [Rh(L-OCH3)3] complex has been determined by X-ray crystallography. The complexes are diamagnetic, and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. They also fluoresce in the visible region under ambient condition while excited at around 400 nm. Cyclic voltammetry on these complexes shows a Rh(III)-Rh(IV) oxidation (within 0·84–1·67 V vs SCE), followed by an oxidation of the coordinated triazene ligand (except the R = NO2 complex). An irreversible reduction of the coordinated triazene is also observed for all the complexes below −1·03 V vs SCE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albertin G, Antoniutti S, Bedin M, Castro J and Garcia-Fontan S 2006 Inorg. Chem. 45 3816

    Article  CAS  Google Scholar 

  2. Creswell C J, Queiros M A M and Robinson S D 1982 Inorg. Chim. Acta 60 157

    Article  CAS  Google Scholar 

  3. Immirzi A, Porzio W, Bombieri G and Toniolo L 1980 J. Chem. Soc., Dalton Trans. 1098

  4. Brown L D and Ibers J A 1976 J. Am. Chem. Soc. 98 1597

    Article  CAS  Google Scholar 

  5. Clark T, Cochrane, J, Colson S F, Malik K Z, Robinson S T and Steed J W 2001 Polyhedron 20 1875

    Article  CAS  Google Scholar 

  6. Pfeiffer D, Guzei I A, Liable-Sands L M, Heeg M J, Rheingold A L and Winter C H 1999 J. Organomet. Chem. 588 167

    Article  CAS  Google Scholar 

  7. Westhusin S, Gantzel P and Walsh P 1998 J. Inorg. Chem. 37 5956

    Article  CAS  Google Scholar 

  8. Menon M, Pramanik A, Chattopadhyay S, Bag N and Chakravorty A 1995 Inorg. Chem. 34 1361

    Article  CAS  Google Scholar 

  9. Leman J T, Braddock-Wilking J, Coolong A J and Barron A R 1993 Inorg. Chem. 32 4324

    Article  CAS  Google Scholar 

  10. Colson S F and Robinson S D 1990 Polyhedron 9 1737

    Article  CAS  Google Scholar 

  11. Carriedo C, Connelly N G, Hettrich R, Orpen A G and White A M J 1989 J. Chem. Soc., Dalton Trans. 745

  12. Hillhouse G L and Haymore B L 1987 Inorg. Chem. 26 1876

    Article  CAS  Google Scholar 

  13. Queiros M A M, Simao J E J and Dias A R 1987 J. Organomet. Chem. 329 85

    Article  CAS  Google Scholar 

  14. Nuricumbo-Escobar J J, Campos-Alvarado C, Rios-Moreno G, Morales-Morales D, Walsh P J and Parra-Hake M 2007 Inorg. Chem. 46 6182

    Article  CAS  Google Scholar 

  15. Adams C J, Baber R A, Connelly N O, Hardeng P, Hayward O D, Kandiah M and Orpen A G 2007 J. Chem. Soc., Dalton Trans. 13 1325

    Google Scholar 

  16. Tejel C, Ciriano M A, Rios-Moreno G, Dobrinovitch I T, Lahoz F J, Oro L A and Parra-Hake M 2004 Inorg. Chem. 43 4719

    Article  CAS  Google Scholar 

  17. Connelly N G, Hayward O D, Klangsinsirikul P and Orpen A G 2002 J. Chem. Soc., Dalton Trans. 305

  18. Ruiz J, Lopez G F J, Rodriguez V, Perez J, Ramirez de Arellano M C and Lopez G 2001 J. Chem. Soc., Dalton Trans. 2683

  19. Gantzel P and Walsh P J 1998 Inorg. Chem. 37 3450

    Article  CAS  Google Scholar 

  20. Ang H G, Koh L L and Yang G Y 1996 J. Chem. Soc., Dalton Trans. 8 1573

    Article  Google Scholar 

  21. Connelly N G, Einig T, Garcia G, Herbosa G, Hopkins P M, Mealli C, Orpen A G, Rosair G M and Viguri F 1994 J. Chem. Soc., Dalton Trans. 2025

  22. Hursthouse M B, Mazid M A, Clark T and Robinson D 1993 Polyhedron 12 563

    Article  CAS  Google Scholar 

  23. Connelly N G and Garcia G 1987 J. Chem. Soc., Dalton Trans. 2737

  24. Smith M B K, Taneyhill L A, Michejda C J and Smith (Jr) R H 1996 Chem. Res. Toxicol. 9 341

    Article  Google Scholar 

  25. McConnaughie A M and Jenkins T C 1995 J. Med. Chem. 38 3488

    Article  CAS  Google Scholar 

  26. Smith(Jr) R H, Scudiero D A and Michejda C J 1990 J. Med. Chem. 33 2579

  27. GuhaRoy C, Butcher R J and Bhattacharya S 2008 J. Organomet. Chem. 693 3923

    Article  CAS  Google Scholar 

  28. Evans D, Osborn J A and Wilkinson G 1968 Inorg. Synth. 11 99

    Article  CAS  Google Scholar 

  29. Hartman W W and Dickey J B 1943 Org. Synth. 2 163

    Google Scholar 

  30. Sawyer D T and Roberts J L Jr 1974 Experimental electrochemistry for chemists (New York: Wiley) pp 167–215

    Google Scholar 

  31. Walter M and Ramaley L 1973 Anal. Chem. 45 165

    Article  CAS  Google Scholar 

  32. The reaction does not occur in the absence of base (NEt3).

  33. Chemical shifts are given in ppm and multiplicity of the signals along with the associated coupling constants (J in Hz) are given in parentheses. Overlapping signals are marked with an asterisk

  34. Sheldrick G M 1997 SHELXS-97 and SHELXL-97, Fortran programs for crystal structure solution and refinement, University of Gottingen: Gottingen, Germany

    Google Scholar 

  35. Laing K R, Robinson S D and Uttley M F 1974 J. Chem. Soc., Dalton Trans. 1205

  36. Calhorda M. J 2000 Chem. Commun. 801

  37. Janiak C, Temizdemir S and Dechert S 2000 Inorg. Chem. Commun. 3 271

    Article  CAS  Google Scholar 

  38. Janiak C, Temizdemir S, Dechert S, Deck W, Girgsdies F, Heinze J, Kolm M. J, Scarmann T G and Zipffel O M 2000 Eur. J. Inorg. Chem. 1229

  39. Desiraju G R and Steiner T 1999 The weak hydrogen bond (IUCr monograph on crystallography 9), Oxford Science Publ.

  40. Hannon M J, Painting C L and Alcock N W 1999 Chem. Commun. 2023

  41. Mcnelis B J, Nathan L C and Clark C J 1999 J. Chem. Soc., Dalton Trans. 1831

  42. Biradha K, Seward C and Zaworotko M J 1999 Angew. Chem., Int. Ed. 38 492

    Article  CAS  Google Scholar 

  43. Burley S K and Petsko G A 1998 Adv. Protein Chem. 39 125

    Article  Google Scholar 

  44. Nishio M, Hirota M and Umezawa Y 1998 The CH—π interactions (Evidence, Nature and Consequences), (New York: Wiley-VCH)

    Google Scholar 

  45. Umezawa Y, Tsuboyama S, Honda K, Uzawa J and Nishio M 1998 Bull. Chem. Soc., Jpn. 71 1207

    Article  CAS  Google Scholar 

  46. Madhavi N N L, Katz A K, Carrell H L, Nangia A and Desiraju G R 1997 Chem. Commun. 1953

  47. Weiss H C, Blaser D, Boese R, Doughan B M and Haley M M 1997 Chem. Commun. 1703

  48. Burley S K and Petsko G A 1985 Science 229 23

    Article  CAS  Google Scholar 

  49. CelenligilCetin R, Watson L A, Guo C, Foxman B M and Ozerov O V 2005 Organometallics 24 186

    Article  CAS  Google Scholar 

  50. Li T, Churlaud R, Lough A J, Abdur-Rashid K and Morris R H 2004 Organometallics 23 6239

    Article  CAS  Google Scholar 

  51. Yi C S, Yun S Y and Guzei I A 2004 Organometallics 23 5392

    Article  CAS  Google Scholar 

  52. The complex [Rh(L-NO2)3] does not have any absorption in the visible region

  53. Mealli C and Proserpio D M 1990 J. Chem. Educ. 67 399

    Article  CAS  Google Scholar 

  54. Mealli C and Proserpio D M 1994 CACAO Version 4.0, Firenze, Italy

    Google Scholar 

  55. In the [Rh(L-NO2)3] complex the LUMO has significant contributions from the NO2 fragment

  56. The excitation wavelength is different for the [Rh(LNO2)3] complex

  57. Cook M J, Lewis A P, Thomson G S J, Glasper J L and Robbins D J 1984 J. Chem. Soc., Perkin Trans. 293

  58. Crosby G A and Elfring Jr W H 1976 J. Phys. Chem. 80 2206

    Article  CAS  Google Scholar 

  59. A little dichloromethane was necessary to take the complex into solution. Addition of large excess of acetonitrile was necessary to record the redox responses in proper shape

  60. For the [Rh(L-NO2)3] complexes only one oxidation have been observed, probably because the other oxidation occurs beyond the voltage window

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samaresh Bhattacharya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guharoy, C., Drew, M.G.B. & Bhattacharya, S. Tris-(1,3-diaryltriazenide) complexes of rhodium — Synthesis, structure and, spectral and electrochemical properties. J Chem Sci 121, 257–266 (2009). https://doi.org/10.1007/s12039-009-0028-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-009-0028-5

Keywords

Navigation