Base pairing in RNA structures: A computational analysis of structural aspects and interaction energies

Abstract

The base pairing patterns in RNA structures are more versatile and completely different as compared to DNA. We present here results of ab-initio studies of structures and interaction energies of eight selected RNA base pairs reported in literature. Interaction energies, including BSSE correction, of hydrogen added crystal geometries of base pairs have been calculated at the HF/6-31G** level. The structures and interaction energies of the base pairs in the crystal geometry are compared with those obtained after optimization of the base pairs. We find that the base pairs become more planar on full optimization. No change in the hydrogen bonding pattern is seen. It is expected that the inclusion of appropriate considerations of many of these aspects of RNA base pairing would significantly improve the accuracy of RNA secondary structure prediction.

This is a preview of subscription content, log in to check access.

References

  1. 1. (a)

    Kim S H, Suddath F L, Quigley G J, McPherson A, Sussman J L, Wang A H, Seeman N C and Rich A 1974 Science 185 435; (b) Robertus J D, Ladner J E, Finch J T, Rhodes D, Brown R S, Clark B F and Klug A 1974 Nature (London) 250 546

    Article  CAS  Google Scholar 

  2. 2. (a)

    Scott W G, Finch J T and Klug A 1995 Cell 81 991; (b) Ferré-D’Amaré A R, Zhou K and Doudna J A 1998 Nature (London) 395 567; (c) Golden B L, Gooding A R, Podell E R and Cech T R 1998 Science 282 259; (d) Wedekind J E and McKay D B 1999 Nat. Struct. Biol. 6 261

    Article  CAS  Google Scholar 

  3. 3.

    Wimberley B T, Guymon R, McCutcheon J P, White S W and Ramakrishnan V 1999 Cell 97 491

    Article  Google Scholar 

  4. 4.

    Ban N, Nissen P, Hansen J, Moore P B and Steitz T A 2000 Science 289 905

    Article  CAS  Google Scholar 

  5. 5.

    Yusupov M M, Yusupova G Z, Baucom A, Lieberman K, Earnest T N, Cate J H D and Noller H F 2001 Science 292 883

    Article  CAS  Google Scholar 

  6. 6.

    Šponer J E, Špačková N, Leszczynski J and Šponer J 2005 J. Phys. Chem. B109 11399

  7. 7. (a)

    Leontis N B and Westhof E Q 1998 Q. Rev. Biophys. 31 399; (b) Leontis N B, Lesocute A and Westhof E 2006 Curr. Opin. Struct. Biol. 16 279; (c) Cate J H, Gooding A R, Podell E, Zhou, K H, Golden B L. Kundrot C E, Cech T R and Doudna J A 1996 Science 272 1678; (d) Scott W G, Murray J B, Arnold J R P, Stoddard B L and Klung A 1996 Science 274 2065

    Article  CAS  Google Scholar 

  8. 8.

    Leontis N B and Westhof E 2001 RNA 7 499

    Article  CAS  Google Scholar 

  9. 9.

    Leontis N B, Stombaugh J and Westhof E 2002 Nucleic Acids Res. 30 3497

    Article  CAS  Google Scholar 

  10. 10.

    Šponer J and Hobza P 2003 Collect. Czech. Chem. Commun. 68 2231

    Article  Google Scholar 

  11. 11.

    Meyer I M and Miklos I 2004 BMC Mol. Biol 5 10

    Article  Google Scholar 

  12. 12.

    Gould I R and Kollman P A 1994 J. Am. Chem. Soc. 116 2493

    Article  CAS  Google Scholar 

  13. 13.

    Danilov V I and Anisimov V M 2005 J. Biomol. Struct. Dyn. 22 471

    CAS  Google Scholar 

  14. 14.

    Hesselmann A, Jansewn G and Schütz M 2006 J. Amer. Chem. Soc. 128 11730

    Google Scholar 

  15. 15.

    Mukherjee S, Majumdar S and Bhattacharyya D 2005 J. Phys. Chem. B109 10484

    Google Scholar 

  16. 16.

    Šponer J, Jurečka P and Hobza P 2004 J. Am. Chem. Soc. 126 10142

    Google Scholar 

  17. 17.

    Das J, Mukherjee S, Mitra A and Bhattacharyya D 2006 J. Biomol. Struct. Dyn. 24 149

    CAS  Google Scholar 

  18. 18. (a)

    Roger Sayle and James Milner-White E 1995 Trends Biochem. Sci. 20 374; (b) Herbert J Bernstein 2000 Trends Biochem. Sci. 9 453

    Article  CAS  Google Scholar 

  19. 19.

    Schaftenaar G and Noordik J H 2000 J. Comput. Aided Mol. Design 14 123

    Article  CAS  Google Scholar 

  20. 20.

    Bhattacharyya D, Koripella S C, Mitra A, Rajendran V B and Sinha B 2006 IIT Hyderabad Technical Report TR No. IIIT/TR/2006/25 (http://www.iiit.net/techreports/reports.html)

  21. 21.

    Schmidt M W, Baldridge K K, Boatz J A, Elbert S T, Gordon M S, Jensen J, Koseky S, Matsunaga N, Nguyen K A, Su S J, Windus T L, Dupuis M and Montgomery J A 1993 J. Comput. Chem. 14 1347

    Article  CAS  Google Scholar 

  22. 22.

    Kitaura K and Morokuma K 1976 Int. J. Quantum Chem. 10 325

    Article  CAS  Google Scholar 

  23. 23.

    Oliva R, Cavallo L and Tramontano A 2006 Nucl. Acids Res. 34 865

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abhijit Mitra.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sharma, P., Mitra, A., Sharma, S. et al. Base pairing in RNA structures: A computational analysis of structural aspects and interaction energies. J Chem Sci 119, 525–531 (2007). https://doi.org/10.1007/s12039-007-0066-9

Download citation

Keywords

  • Base pairing of RNA
  • DNA sequence
  • interaction energy of RNA
  • RNA structures