Skip to main content
Log in

Deep phenotyping of miRNAs in exercise-induced cardiac hypertrophy and fibrosis

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Cardiac hypertrophy (CH) is an adaptational enlargement of the myocardium, in exposure to altered stress conditions or in case of injury which can lead to heart failure and death. MicroRNAs (miRNAs) are non-coding RNAs that play a significant role in modulating gene expression. Here, we aimed to identify new miRNAs effective in an experimental CH model and to find an epigenetic biomarker that could demonstrate therapeutic targets responsible for the pathology of heart tissue and serum. In this study, Sprague–Dawley male rats were divided into the training group (TG, n=9) and the control group (CG, n=6). Systolic and diastolic dimensions of the left ventricle and myocardial wall thickness were measured by echocardiography to assess CH. After the exercise program of the rats, miRNA expression measurements and histological analyses were performed. The 25,000 genes in the rat genome were searched using microarray analysis. A total of 128 miRNAs were selected according to the fold change rates, and nine miRNAs were validated for expression analysis. The terminal deoxynucleotidyl transferase dUTP nick (TUNEL) method was used to detect apoptotic cells. Cell proliferation was evaluated by the proliferative cell nuclear antigen (PCNA) method. Necrosis, bleeding, and intercellular edema were detected in TG. The mean histopathological score was higher in TG (p=0.03). There were rarely positive cells for apoptosis of both groups in cardiomyocytes. In the receiver characteristic curve analysis (ROC), the heart tissue rno-miR-290 had an area under the curve (AUC) of 0.920 with 100% sensitivity and 89.90% specificity (p=0.045), rno-miR-194-5p had AUC of 0.940 with 83.33% sensitivity and 100% specificity (p=0.003), and the serum rno-miR-132-3p AUC was 0.880 with 66.67% sensitivity and 100% specificity (p=0.004) in TG. miR-194-5p was used as a therapeutic target for remodeling the cardiac process. While miR-290 contributes to CH as a negative regulator, miR-132 in serum is effective in the pathological and physiological cardiac remodeling process and is a candidate biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Artzi S, Kiezun A and Shomron N 2008 Mirnaminer: a tool for homologous microrna gene search. BMC Bioinform. 9 39

    Article  Google Scholar 

  • Baggish AL, Park J, Min PK, et al. 2014 Rapid upregulation and clearance of distinct circulating microRNAs after prolonged aerobic exercise. J. Appl. Physiol. 116 522–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbas CF 3rd, Burton DR, Scott JK, et al. 2007 Quantitation of DNA and RNA. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.ip47

    Article  Google Scholar 

  • Barber JL, Zellars KN, Barringhaus KG, et al. 2019 The effects of regular exercise on circulating cardiovascular-related microRNAs. Sci. Rep. 9 7527

    Article  PubMed  PubMed Central  Google Scholar 

  • Batista PJ and Chang HY 2013 Long noncoding RNAs: cellular address codes in development and disease. Cell 152 1298–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardo BC, Weeks KL, Pretorius L, et al. 2010 Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol. Ther. 128 191–227

    Article  CAS  PubMed  Google Scholar 

  • Care A, Catalucci D, Felicetti F, et al. 2007 MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 13 613–618

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Ponnusamy M, Liu C, et al. 2017 MicroRNA as a therapeutic target in cardiac remodeling. BioMed. Res. Int. 2017 1278436

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y and Wang X 2020 miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 48 D127–D131

    Article  CAS  PubMed  Google Scholar 

  • Condrat CE, Thompson DC, Barbu MG, et al. 2020 MiRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells 9 276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham KS, Spears DA and Care M 2019 Evaluation of cardiac hypertrophy in the setting of sudden cardiac death. Forensic Sci. Res. 4 223–240

    Article  PubMed  PubMed Central  Google Scholar 

  • de Gonzalo-Calvo D, Dávalos A, Montero A, et al. 2015 Circulating inflammatory miRNA signature in response to different doses of aerobic exercise. J. Appl. Physiol. 119 124–134

    Article  PubMed  Google Scholar 

  • DeLong ER, DeLong DM and Clarke-Pearson DL 1988 Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44 837–845

    Article  CAS  PubMed  Google Scholar 

  • de Simone G, Wallerson DC, Volpe M, et al. 1990 Echocardiographic measurement of left ventricular mass and volume in normotensive and hypertensive rats: necropsy validation. Am. J. Hypertens. 3 688–696

    Article  PubMed  Google Scholar 

  • Dillmann W 2010 Cardiac hypertrophy and thyroid hormone signaling. Heart Fail. Rev. 15 125–132

    Article  CAS  PubMed  Google Scholar 

  • Doxakis A, Polyanthi K, Androniki T, et al. 2019 Targeting metalloproteinases in cardiac remodeling. J. Cardiovasc. Med. Cardiol. 6 51–60

    Article  Google Scholar 

  • Evangelista F, Brum P and Krieger J 2003 Duration-controlled swimming exercise training induces cardiac hypertrophy in mice. Braz. J. Med. Biol. Res. 36 1751–1759

    Article  CAS  PubMed  Google Scholar 

  • Fan D, Takawale A, Lee J, et al. 2012 Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair 5 15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes T, Hashimoto NY, Magalhães FC, et al. 2011 Aerobic exercise training–induced left ventricular hypertrophy involves regulatory microRNAs, decreased angiotensin-converting enzyme-angiotensin ii, and synergistic regulation of angiotensin-converting enzyme 2-angiotensin (1–7). Hypertension 58 182–189

    Article  CAS  PubMed  Google Scholar 

  • Fisch S, Gray S, Heymans S, et al. 2007 Kruppel-like factor 15 is a regulator of cardiomyocyte hypertrophy. Proc. Natl. Acad. Sci. USA 104 7074–7079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helgerud J, Høydal K, Wang E, et al. 2007 Aerobic high-intensity intervals improve V O2max more than moderate training. Med. Sci. Sports Exerc. 39 665–671

    Article  PubMed  Google Scholar 

  • Hughes DC, Ellefsen S and Baar K 2018 Adaptations to endurance and strength training. Cold Spring Harb. Perspect. Med. 8 a029769

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeppesen PL, Christensen GL, Schneider M, et al. 2011 Angiotensin II type 1 receptor signalling regulates microRNA differentially in cardiac fibroblasts and myocytes. Brit. J. Pharmacol. 164 394–404

    Article  CAS  Google Scholar 

  • Johnson EJ, Dieter BP and Marsh SA 2015 Evidence for distinct effects of exercise in different cardiac hypertrophic disorders. Life Sci. 123 100–106

    Article  CAS  PubMed  Google Scholar 

  • Kawahara Y, Tanonaka K, Daicho T, et al. 2005 Preferable anesthetic conditions for echocardiographic determination of murine cardiac function. J. Pharmacol. Sci. 99 95–104

    Article  CAS  PubMed  Google Scholar 

  • Kiernan JA 1999 Histological and histochemical methods: theory and practice. Shock 12 479

    Article  Google Scholar 

  • Kokubo M, Uemura A and Matsubara T 2005 Noninvasive evaluation of the time course of change in cardiac function in spontaneously hypertensive rats by echocardiography. Hypertens. Res. 28 601–609

    Article  PubMed  Google Scholar 

  • Krämer A, Green J, Pollard J Jr, et al. 2014 Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30 523–530

    Article  PubMed  Google Scholar 

  • Leenders JJ, Wijnen WJ, van der Made I, et al. 2012 Repression of cardiac hypertrophy by KLF15: underlying mechanisms and therapeutic implications. PLoS One 7 e36754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W and Wang X 2019 Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 20 18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ and Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔCT) method. Methods 25 402–408

    Article  CAS  PubMed  Google Scholar 

  • Maron BJ 1986 Structural features of the athlete heart as defined by echocardiography. J. Am. Coll. Cardiol. 7 190–203

    Article  CAS  PubMed  Google Scholar 

  • Maron BJ, Wolfson JK and Roberts WC 1992 Relation between extent of cardiac muscle cell disorganization and left ventricular wall thickness in hypertrophic cardiomyopathy. Am. J. Cardiol. 70 785–790

    Article  CAS  PubMed  Google Scholar 

  • Masè M, Grasso M, Avogaro L, et al. 2017 Selection of reference genes is critical for miRNA expression analysis in human cardiac tissue. A focus on atrial fibrillation. Sci. Rep. 7 41127

  • McConnell BB and Yang VW 2010 Mammalian Krüppel-like factors in health and diseases. Physiol. Rev. 90 1337–1381

    Article  CAS  PubMed  Google Scholar 

  • Mega C, Vala H, Rodrigues-Santos P, et al. 2014 Sitagliptin prevents aggravation of endocrine and exocrine pancreatic damage in the Zucker diabetic fatty rat-focus on amelioration of metabolic profile and tissue cytoprotective properties. Diabetol. Metab. Syndr. 6 42

    Article  PubMed  PubMed Central  Google Scholar 

  • Mokhtari B, Badalzadeh R, Alihemmati A, et al. 2015 Phosphorylation of GSK-3β and reduction of apoptosis as targets of troxerutin effect on reperfusion injury of diabetic myocardium. Eur. J. Pharmacol. 765 316–321

    Article  CAS  PubMed  Google Scholar 

  • Moschos SA, Williams AE, Perry MM, et al. 2007 Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics 8 240

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller AL and Dhalla NS 2013 Differences in concentric cardiac hypertrophy and eccentric hypertrophy; in Cardiac adaptations (Springer) pp. 147–166

  • Nakamura M and Sadoshima J 2018 Mechanisms of physiological and pathological cardiac hypertrophy. Nat. Rev. Cardiol. 15 387–407

    Article  CAS  PubMed  Google Scholar 

  • Natarajan A, Yamagishi H, Ahmad F, et al. 2001 Human eHAND, but not dHAND, is down-regulated in cardiomyopathies. J. Mol. Cell. Cardiol. 33 1607–1614

    Article  CAS  PubMed  Google Scholar 

  • Oktay AA, Aktürk HK, Paul TK, et al. 2020 Diabetes, cardiomyopathy, and heart failure; in Endotext (Eds) KR Feingold, B Anawalt, MR Blackman, et al. (South Dartmouth (MA): MDText.com, Inc.)

  • Patel SK, Ramchand J, Crocitti V, et al. 2018 Kruppel-like factor 15 is critical for the development of left ventricular hypertrophy. Int. J. Mol. Sci. 19 1303

    Article  PubMed  PubMed Central  Google Scholar 

  • Quiñones MA, Otto CM, Stoddard M, et al. 2002 Recommendations for quantification of Doppler echocardiography: a report from the Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 15 167–184

    Article  PubMed  Google Scholar 

  • Rerych SK, Scholz PM, Sabiston DC Jr, et al. 1980 Effects of exercise training on left ventricular function in normal subjects: a longitudinal study by radionuclide angiography. Am. J. Cardiol. 45 244–252

    Article  CAS  PubMed  Google Scholar 

  • Sayed D, Hong C, Chen IY, et al. 2007 MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ. Res. 100 416–424

    Article  CAS  PubMed  Google Scholar 

  • Soci UP, Fernandes T, Hashimoto NY, et al. 2011 MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiol. Genomics 43 665–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stansfield WE, Ranek M, Pendse A, et al. 2014 The pathophysiology of cardiac hypertrophy and heart failure; in Cellular and molecular pathobiology of cardiovascular disease (Elsevier) pp. 51–78

  • Stein RA, Michielli D, Diamond J, et al. 1980 The cardiac response to exercise training: Echocardiographic analysis at rest and during exercise. Am. J. Cardiol. 46 219–225

    Article  CAS  PubMed  Google Scholar 

  • Thattaliyath BD, Livi CB, Steinhelper ME, et al. 2002 HAND1 and HAND2 are expressed in the adult-rodent heart and are modulated during cardiac hypertrophy. Biochem. Biophys. Res. Commun. 297 870–875

    Article  CAS  PubMed  Google Scholar 

  • Topkara VK and Mann DL 2010 Clinical applications of miRNAs in cardiac remodeling and heart failure. Perspect. Med. 7 531–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ucar A, Gupta SK, Fiedler J, et al. 2012 The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat. Commun. 3 1078

    Article  PubMed  Google Scholar 

  • van Rooij E and Olson EN 2009 Searching for miR-acles in cardiac fibrosis. Circ. Res. 104 138–140

    Article  PubMed  PubMed Central  Google Scholar 

  • van Rooij E, Marshall WS and Olson EN 2008a Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ. Res. 103 919–928

    Article  PubMed  PubMed Central  Google Scholar 

  • van Rooij E, Sutherland LB, Thatcher JE, et al. 2008b Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl. Acad. Sci. USA 105 13027–13032

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang B, Haldar SM, Lu Y, et al. 2008 The Kruppel-like factor KLF15 inhibits connective tissue growth factor (Ctgf) expression in cardiac fibroblasts. J. Mol. Cell. Cardiol. 45 193–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Lv Y, Li G, et al. 2018 MicroRNAs in heart and circulation during physical exercise. J. Sport Health Sci. 7 433–441

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wisloff U and Kemi OJ 2010 Animal models in the study of exercise-induced cardiac hypertrophy. Physiol. Res. 59 633

    Article  CAS  PubMed  Google Scholar 

  • Wijnen WJ, Pinto YM and Creemers EE 2013 The therapeutic potential of miRNAs in cardiac fibrosis: Where do we stand? J. Cardiovasc. Transl. Res. 6 899–908

    Article  PubMed  Google Scholar 

  • Zheng Z, Zeng Y, Huang H, et al. 2013 MicroRNA-132 may play a role in coexistence of depression and cardiovascular disease: a hypothesis. Med. Sci. Monit. 19 438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Scientific Research Projects Unit of Istanbul University (Project No.: 48783).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukaddes Pala.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Ethical standards

All applicable international, national, and/or institutional principles for the care and use of animals have been observed.

Additional information

Corresponding editor: Sreenivas Chavali

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pala, M., Gorucu Yilmaz, S., Altan, M. et al. Deep phenotyping of miRNAs in exercise-induced cardiac hypertrophy and fibrosis. J Biosci 48, 36 (2023). https://doi.org/10.1007/s12038-023-00360-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-023-00360-4

Keywords

Navigation