Skip to main content
Log in

Crosstalk between MAPKs and GSH under stress: A critical review

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Plants are frequently exposed to a plethora of unfavourable climatic catastrophes, be it abiotic or biotic stresses, viz., salinity, water (drought or water logging), extreme temperature, heavy metal, nutrient deficiency, ozone, pathogen attack, etc., which badly affect the yield and productivity of crops. Plants, as part of their defence machinery, employ different tolerance mechanisms to survive under adverse conditions. In addition to other stress responses, the mitogen-activated protein kinase (MAPK) signalling cascade and accumulation of glutathione (GSH) are two important aspects of plant defence response. Induction of the MAPK cascade is one of the earliest responses when a plant is under any environmental stress, and there is documentary evidence of this signalling pathway, in turn, regulating various phytohormone-signalling networks and other defence-related pathways during stress. Similarly, GSH being a low molecular weight metabolite also has a key role in environmental stress tolerance. It is known to be involved in multi-step interactions with various phytohormones, many signalling molecules, and redox molecules such as reactive oxygen species (ROS). This review provides an outline on GSH–MAPK crosstalk to better understand its role in the context of defence signalling in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

ASC:

ascorbate

AsA:

ascorbic acid

DMTU:

dimethylthiourea

DPI:

diphenyleneiodonium

HR:

hypersensitive response

NEM:

N-ethylmaleimide

References

  • Asai T, Tena G, Plotnikova J, et al. 2002 MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415 977–983

    Article  CAS  Google Scholar 

  • Ball L, Accotto GP, Bechtold U, et al. 2004 Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16 2448–2462

    Article  CAS  Google Scholar 

  • Bergmann L and Rennenberg H 1993 Glutathione metabolism in plants; in Sulfur nutrition and sulfur assimilation in higher plants (eds) LJ De Kok, I Stulen, H Rennenberg, C Brunold and WE Rauser (The Hague, the Netherlands: SPB Academic Publishers) pp 109–123

  • Boller T and Felix G 2009 A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60 379–406

    Article  CAS  Google Scholar 

  • Boro P, Sultana A, Mandal K and Chattopadhyay S 2022 Interplay between glutathione and mitogen-activated protein kinase 3 via transcription factor WRKY40 under combined osmotic and cold stress in Arabidopsis. J. Plant Physiol. 271 153664

    Article  CAS  Google Scholar 

  • Cairns NG, Pasternak M, Wachter A, Cobbett CS and Meyer AJ 2006 Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol. 141 446–455

    Article  CAS  Google Scholar 

  • Clemente-Moreno MJ, Diaz-Vivancos P, Barba-Espín G and Hernández JA 2010 Benzothiadiazole and L-2-oxothiazolidine-4-carboxylic acid reduced the severity of Sharka symptoms in pea leaves: effect on the antioxidative metabolism at subcellular level. Plant Biol. 12 88–97

    Article  CAS  Google Scholar 

  • Dai C and Gao A 2016 Identification of wheat-Agropyron cristatum 6P translocation lines and localization of 6P-specific EST markers. Euphytica 208 265–275

    Article  CAS  Google Scholar 

  • Dalton TP, Shertzer HG and Puga A 1999 Regulation of gene expression by reactive oxygen. Annu. Rev. Pharmacol. Toxicol. 39 67–101

    Article  CAS  Google Scholar 

  • Dixon RA and Lamb CJ 1990 Molecular communication in interactions between plants and microbial pathogens. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 41 339–367

    Article  CAS  Google Scholar 

  • Geu-Flores F, Møldrup ME, Böttcher C, et al. 2011 Cytosolic γ-glutamyl peptidases process glutathione conjugates in the biosynthesis of glucosinolates and camalexin in Arabidopsis. Plant Cell 23 2456–2469

    Article  CAS  Google Scholar 

  • Ghanta S, Bhattacharyya D, Sinha R, Banerjee A and Chattopadhyay S 2011 Nicotiana tabacum overexpressing γ-ECS exhibits biotic stress tolerance likely through NPR1-dependent salicylic acid-mediated pathway. Planta 233 895–910

    Article  CAS  Google Scholar 

  • Glazebrook J and Ausubel FM 1994 Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. Proc. Natl. Acad. Sci. USA 91 8955–8959

    Article  CAS  Google Scholar 

  • Glazebrook J, Zook M, Mert F, et al. 1997 Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics 146 381–392

    Article  CAS  Google Scholar 

  • González A, Laporte D and Moenne A 2021 Cadmium accumulation involves synthesis of glutathione and phytochelatins, and activation of CDPK, CaMK, CBLPK, and MAPK signaling pathways in Ulva compressa. Front. Plant Sci. 12 669096

    Article  Google Scholar 

  • Grill D, Tausz M and De Kok LJ 2001 Significance of glutathione in plant adaptation to the environment; in Handbook of plant ecophysiology (ed) LJ De Kok (Dordrecht: Kluwer)

  • Gullner G, Komives T, Király L and Schröder P 2018 Glutathione S-transferase enzymes in plant-pathogen interactions. Front. Plant Sci. 9 1836

    Article  Google Scholar 

  • Hammerschmidt R 1999 Phytoalexins: what have we learned after 60 years? Annu. Rev. Phytopathol. 37 285–306

    Article  CAS  Google Scholar 

  • Ichimura K, Shinozaki K, Tena G, et al. 2002 Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci. 7 301–308

    Article  CAS  Google Scholar 

  • Jonak C, Ökrész L, Bögre L and Hirt H 2002 Complexity, cross talk and integration of plant MAP kinase signalling. Curr. Opin. Plant Biol. 5 415–424

    Article  CAS  Google Scholar 

  • Kang G, Li G and Guo T 2014 Molecular mechanism of salicylic acid-induced abiotic stress tolerance in higher plants. Acta. Physiol. Plant. 36 2287–2297

    Article  CAS  Google Scholar 

  • Knight H and Knight MR 2001 Abiotic stress signalling pathways: specificity and crosstalk. Trends Plant Sci. 6 262–267

    Article  CAS  Google Scholar 

  • Komis G, Šamajová O, Ovečka M and Šamaj J 2018 Cell and developmental biology of plant mitogen-activated protein kinases. Annu. Rev. Plant Biol. 69 237–265

    Article  CAS  Google Scholar 

  • Lamb CJ, Lawton MA, Dron M and Dixon RA 1989 Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell 56 215–224

    Article  CAS  Google Scholar 

  • Laporte D, González A and Moenne A 2020 Copper-induced activation of MAPKs, CDPKs and CaMKs triggers activation of hexokinase and inhibition of pyruvate kinase leading to increased synthesis of ASC, GSH and NADPH in Ulva compressa. Front. Plant Sci. 11 990

    Article  Google Scholar 

  • Lin C and Chen S 2018 New functions of an old kinase MPK4 in guard cells. Plant Signal. Behav. 13 e1477908

    Article  CAS  Google Scholar 

  • Liu Y, Zhang S and Klessig DF 2000 Molecular cloning and characterization of a tobacco MAP kinase kinase that interacts with SIPK. Mol. Plant Microbe Interact. 13 118–124

    Article  CAS  Google Scholar 

  • Liu XM, Kim KE, Kim KC, et al. 2010 Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species. Phytochemistry 71 614–618

    Article  CAS  Google Scholar 

  • Mahmood Q, Ahmad R, Kwak SS, Rashid A and Anjum NA 2010 Ascorbate and glutathione: protectors of plants in oxidative stress; in Ascorbate-glutathione pathway and stress tolerance in plants (eds) NA Anjum, MT Chan and S Umar (Springer: Dordrecht) pp 209–229

  • Matern S, Peskan-Berghoefer T, Gromes R, Kiesel RV and Rausch T 2015 Imposed glutathione-mediated redox switch modulates the tobacco wound-induced protein kinase and salicylic acid-induced protein kinase activation state and impacts on defence against Pseudomonas syringae. J. Exp. Bot. 66 1935–1950

    Article  CAS  Google Scholar 

  • Meister A 1988 Glutathione metabolism and its selective modification. J. Biol. Chem. 263 17205–17208

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M and Van Breusegem F 2004 Reactive oxygen gene network of plants. Trends Plant Sci. 9 490–498

    Article  CAS  Google Scholar 

  • Morris PC 2001 MAP kinase signal transduction pathways in plants. New Phytol. 151 67–89

    Article  CAS  Google Scholar 

  • Mou Z, Fan W and Dong X 2003 Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113 935–944

    Article  CAS  Google Scholar 

  • Noctor G, Queval G, Mhamdi A, Chaouch S and Foyer CH 2011 Glutathione; in The Arabidopsis book (eds) C Somerville and E Meyerowitz (American Society of Plant Biologists: Rockville) pp 1–32

  • Parisy V, Poinssot B, Owsianowski L, et al. 2007 Identification of PAD2 as a γ-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J. 49 159–172

    Article  CAS  Google Scholar 

  • Petersen M, Brodersen P, Naested H, et al. 2000 Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103 1111–1120

    Article  CAS  Google Scholar 

  • Rasmussen MW, Roux M, Petersen M and Mundy J 2012 MAP kinase cascades in Arabidopsis innate immunity. Front. Plant Sci. 3 169

    Article  Google Scholar 

  • Ren D, Yang H and Zhang S 2002 Cell death mediated by mitogen-activated protein kinase pathway is associated with the generation of hydrogen peroxide in Arabidopsis. J. Biol. Chem. 277 559–565

    Article  CAS  Google Scholar 

  • Ren D, Liu Y, Yang KY, Han L, Mao G, Glazebrook J and Zhang S 2008 A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc. Natl. Acad. Sci. 105 5638–5643

    Article  CAS  Google Scholar 

  • Rodriguez MC, Petersen M and Mundy J 2010 Mitogen-activated protein kinase signaling in plants. Annu. Rev. Plant Biol. 61 621–649

  • Rodríguez-Rojas F, Celis-Plá PS, Méndez L, et al. 2019 MAPK pathway under chronic copper excess in green macroalgae (Chlorophyta): Involvement in the regulation of detoxification mechanisms. Int. J. Mol. Sci. 20 4546

    Article  Google Scholar 

  • Schenke D, Bottcher C and Scheel D 2011 Crosstalk between abiotic ultraviolet-B stress and biotic (flg22) stress signalling in Arabidopsis prevents flavonol accumulation in favor of pathogen defence compound production. Plant Cell Environ. 34 1849–1864

    Article  CAS  Google Scholar 

  • Shan C and Dong N 2017 Nitric oxide donor SNP regulates the ascorbate and glutathione metabolism in Agropyron cristatum leaves through MEK1/2. Biol. Plant. 61 774–778

    Article  CAS  Google Scholar 

  • Shan C and Sun H 2018 Jasmonic acid-induced NO activates MEK1/2 in regulating the metabolism of ascorbate and glutathione in maize leaves. Protoplasma 255 977–983

    Article  CAS  Google Scholar 

  • Shan C, Liang Z, Sun Y, Hao W and Han R 2011 The protein kinase MEK1/2 participates in the regulation of ascorbate and glutathione content by jasmonic acid in Agropyron cristatum leaves. J. Plant Physiol. 168 514–518

    Article  CAS  Google Scholar 

  • Sinha R, Kumar D, Datta R, et al. 2015 Integrated transcriptomic and proteomic analysis of Arabidopsis thaliana exposed to glutathione unravels its role in plant defense. Plant Cell Tissue Organ Cult. 120 975–988

    Article  CAS  Google Scholar 

  • Su T, Xu J, Li Y, et al. 2011 Glutathione-indole-3-acetonitrile is required for camalexin biosynthesis in Arabidopsis thaliana. Plant Cell 23 364–380

    Article  Google Scholar 

  • Sytar O, Kumar A, Latowski D, et al. 2013 Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol. Plant. 35 985–999

    Article  CAS  Google Scholar 

  • Taj G, Agarwal P, Grant M and Kumar A 2010 MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. Plant Signal. Behav. 5 1370–1378

  • Tena G, Asai T, Chiu WL and Sheen J 2001 Plant mitogen-activated protein kinase signaling cascades. Curr. Opin. Plant Biol. 4 392–400

    Article  CAS  Google Scholar 

  • Thomma BP, Nelissen I, Eggermont K and Broekaert WF 1999 Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant J. 19 163–171

    Article  CAS  Google Scholar 

  • Tsuji J, Jackson EP, Gage DA, Hammerschmidt R and Somerville SC 1992 Phytoalexin accumulation in Arabidopsis thaliana during the hypersensitive reaction to Pseudomonas syringae pv syringae. Plant Physiol. 98 1304–1309

    Article  CAS  Google Scholar 

  • Tsuji J, Zook M, Somerville SC, Last RL and Hammerschmidt R 1993 Evidence that tryptophan is not a direct biosynthetic intermediate of camalexin in Arabidopsis thaliana. Physiol. Mol. Plant Pathol. 43 221–229

    Article  CAS  Google Scholar 

  • Wang G, Lovato A, Polverari A, et al. 2014 Genome-wide identification and analysis of mitogen activated protein kinase kinase kinase gene family in grapevine (Vitis vinifera). BMC Plant Biol. 14 219

    Article  Google Scholar 

  • Wingate VPM, Lawton MA and Lamb CJ 1988 Glutathione causes a massive and selective induction of plant defense genes. Plant Physiol. 87 206–210

    Article  CAS  Google Scholar 

  • Xiang C, Werner BL, Christensen ELM and Oliver DJ 2001 The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol. 126 564–574

    Article  CAS  Google Scholar 

  • Xu J, Li Y, Wang Y, et al. 2008 Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J. Biol. Chem. 283 26996–27006

    Article  CAS  Google Scholar 

  • Yeh CM, Hsiao LJ and Huang HJ 2004 Cadmium activates a mitogen-activated protein kinase gene and MBP kinases in rice. Plant Cell Physiol. 45 1306–1312

    Article  CAS  Google Scholar 

  • Zaffagnini M, Bedhomme M, Marchand CH, et al. 2012 Glutaredoxin s12: unique properties for redox signaling. Antioxid. Redox Signal. 16 17–32

    Article  CAS  Google Scholar 

  • Zhang S and Klessig DF 2001 MAPK cascades in plant defense signaling. Trends Plant Sci. 6 520–527

    Article  CAS  Google Scholar 

  • Zhang A, Jiang M, Zhang J, Tan M and Hu X 2006 Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiol. 141 475–487

    Article  CAS  Google Scholar 

  • Zhang A, Jiang M, Zhang J, et al. 2007 Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol. 175 36–50

    Article  CAS  Google Scholar 

  • Zhang M, Su J, Zhang Y, Xu J and Zhang S 2018 Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. Curr. Opin. Plant Biol.. https://doi.org/10.1016/j.pbi.2018.04.012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmila Chattopadhyay.

Additional information

Corresponding editor: Jyothilakshmi Vadaserry

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boro, P., Chattopadhyay, S. Crosstalk between MAPKs and GSH under stress: A critical review. J Biosci 47, 71 (2022). https://doi.org/10.1007/s12038-022-00315-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-022-00315-1

Keywords

Navigation