Skip to main content

Advertisement

Log in

Protein as evolvable functionally constrained amorphous matter

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

We explore current ideas around the representation of a protein as an amorphous material, in turn represented by an abstract graph \(\mathcal{G}\) with edges weighted by elastic stiffnesses. By embedding this graph in physical space, we can map every graph to a spectrum of conformational fluctuations and responses (as a result of, say, ligand-binding). This sets up a ‘genotype–phenotype’ map, which we use to evolve the amorphous material to select for fitness. Using this, we study the emergence of allosteric interaction, hinge joint, crack formation and a slide bolt in functional proteins such as adenylate kinase, HSP90, calmodulin and GPCR proteins. We find that these emergent features are associated with specific geometries and mode spectra of floppy or liquid-like regions. Our analysis provides insight into understanding the architectural demands on a protein that enable a prescribed function and its stability to mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Ahmed S, Manjunath K, Chattopadhyay G and Varadarajan R 2022 Identification of stabilizing point mutations through mutagenesis of destabilized protein libraries. J. Biol. Chem. 298 101785

    Article  CAS  Google Scholar 

  • Anfinsen CB 1973 Principles that govern the folding of protein chains. Science 181 223–230

    Article  CAS  Google Scholar 

  • Babu Y, Bugg CE and Cook WJ 1988 Structure of calmodulin refined at 2.2 are solution. J. Mol. Biol. 204 191–204

    Article  CAS  Google Scholar 

  • Banerjee A and Jost J 2008 On the spectrum of the normalized graph laplacian. Lin. Algebra Appl. 428 3015–3022

    Article  Google Scholar 

  • Barbot A, Lerbinger M, Lemaˆıtre A, Vandembroucq D and Patinet S 2020 Rejuvenation and shear banding in model amorphous solids. Phys. Rev. E 101 033001

    Article  CAS  Google Scholar 

  • Cates ME, Wittmer JP, Bouchaud J-P and Claudin P 1998 Jamming, force chains, and fragile matter. Phys. Rev. Lett. 81 1841–1844

    Article  CAS  Google Scholar 

  • Chakraborty D, Mugnai ML and Thirumalai D 2021 On the emergence of orientational order in folded proteins with implications for allostery. Symmetry 13 770

    Article  CAS  Google Scholar 

  • Changeux JP 2012 Allostery and the Monod-Wyman-Changeux model after 50 years. Annu. Rev. Biophys. 41 103–133

    Article  CAS  Google Scholar 

  • Cherezov V, Rosenbaum DM, Hanson MA, et al. 2007 High Resolution crystal structure of an engineered human 2-adrenergic G protein-coupled receptor. Science 318 1258–1265

    Article  CAS  Google Scholar 

  • Chu J-W and Voth GA 2007 Coarse-grained free energy functions for studying protein conformational changes: A double-well network model. Biophys. J. 93 3860–3871

    Article  CAS  Google Scholar 

  • Csermely P, Palotai R and Nussinov R 2010 Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends Biochem. Sci. 35 539–546

    Article  CAS  Google Scholar 

  • DiDonna BA and Lubensky TC 2005 Nonaffine correlations in random elastic media. Phys. Rev. E 72 066619

    Article  CAS  Google Scholar 

  • Dutta S, Eckmann J-P, Libchaber A and Tlusty T 2018 Green function of correlated genes in a minimal mechanical model of protein evolution. Proc. Natl. Acad. Sci. USA 115 E4559–E4568

    Article  CAS  Google Scholar 

  • Eckmann J-P, Rougemont J and Tlusty T 2019 Proteins: The physics of amorphous evolving matter. Rev. Mod. Phys. 91 031001

    Article  CAS  Google Scholar 

  • Frauenfelder H, Sligar S and Wolynes P 1991 The energy landscapes and motions of proteins. Science 254 1598–1603

    Article  CAS  Google Scholar 

  • Garel T, Orland H and Pitard E 1997 Protein Folding and Heteropolymers. in A P Young (ed) Spin Glasses and Random Fields, Series on Directions in Condensed Matter Physics vol. 12 (World Scientific) pp. 387–443

  • Halabi N, Rivoire O, Leibler S and Ranganathan R 2009 Protein sectors: Evolutionary units of three-dimensional structure. Cell 138 774–786

    Article  CAS  Google Scholar 

  • Hexner D, Liu AJ and Nagel SR 2018 Role of local response in manipulating the elastic properties of disordered solids by bond removal. Soft Matter 14 312–318

    Article  CAS  Google Scholar 

  • Hilger D, Masureel M and Kobilka BK 2018 Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol. 25 4–12

    Article  CAS  Google Scholar 

  • Iben IET, Braunstein D, Doster W, et al. 1989 Glassy behavior of a protein. Phys. Rev. Lett. 62 1916–1919

  • Jasnow D 1984 Critical phenomena at interfaces. Rep. Prog. Phys. 47 1059–1132

    Article  CAS  Google Scholar 

  • Koonin EV, Wolf YI and Karev GP 2002 The structure of the protein universe and genome evolution. Nature 420 218–223

    Article  CAS  Google Scholar 

  • Koshland DE, Nemethy G and Filmer D 1966 Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5 365–385

    Article  CAS  Google Scholar 

  • Kuhlman B, Dantas G, Ireton GC, et al. 2003 Design of a novel globular protein fold with atomic-level accuracy. Science 302 1364–1368

    Article  CAS  Google Scholar 

  • Law AB, Sapienza PJ, Zhang J, Zuo X and Petit CM 2017 Native state volume fluctuations in proteins as a mechanism for dynamic allostery. J. Am. Chem. Soc. 139 3599–3602

    Article  CAS  Google Scholar 

  • Liang J and Dill KA 2001 Are proteins well-packed? Biophys. J. 81 751–766

    Article  CAS  Google Scholar 

  • Lu S, He X, Yang Z, et al. 2021 Activation pathway of a g protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design. Nat. Commun. 12 4721

    Article  CAS  Google Scholar 

  • Maragakis P and Karplus M 2005 Large amplitude conformational change in proteins explored with a plastic network model: Adenylate kinase. J. Mol. Biol. 352 807–822

    Article  CAS  Google Scholar 

  • Milo R and Phillips R 2015 Cell biology by the numbers (Garland Science)

  • Monod J, Wyman J and Changeux J-P 1965 On the nature of allosteric transitions: A plausible model. J. Mol. Biol. 12 88–118

    Article  CAS  Google Scholar 

  • M¨uller C, Schlauderer G, Reinstein J and Schulz G, 1996 Adenylate kinase motions during catalysis: an energetic counterweight balancing substrate binding. Structure 4 147–156

    Article  Google Scholar 

  • M¨uller CW and Schulz GE, 1992 Structure of the complex between adenylate kinase from Escherichia coli and the inhibitor ap5a refined at 1.9 are solution: A model for acatalytic transition state. J. Mol. Biol. 224 159–177

    Article  Google Scholar 

  • Osawa M, Tokumitsu H, Swindells M, et al. 1999 A novel target recognition revealed by calmodulin in complex with ca2+calmodulin-dependent kinase kinase. Nat. Struct. Biol. 6 819–824

    Article  CAS  Google Scholar 

  • Rajasekaran N and Naganathan AN 2017 A self-consistent structural perturbation approach for determining the magnitude and extent of allosteric coupling in proteins. Biochem. J. 474 22

    Article  Google Scholar 

  • Ramanoudjame G, Du M, Mankiewicz KA and Jayaraman V 2006 Allosteric mechanism in ampa receptors: A fret-based investigation of conformational changes. Proc. Natl. Acad. Sci. USA 103 10473–10478

    Article  CAS  Google Scholar 

  • Reynolds K, Mclaughlin R and Ranganathan R 2011 Hot spots for allosteric regulation on protein surfaces. Cell 147 1564–1575

    Article  CAS  Google Scholar 

  • Rocks JW, Pashine N, Bischofberger I, et al. 2017 Designing allostery-inspired response in mechanical networks. Proc. Natl. Acad. Sci. USA 114 2520–2525

    Article  CAS  Google Scholar 

  • Sartori P and Leibler S 2020 Lessons from equilibrium statistical physics regarding the assembly of protein complexes. Proc. Natl. Acad. Sci. USA 117 114–120

    Article  CAS  Google Scholar 

  • Shiau AK, Harris SF, Southworth DR and Agard DA 2006 Structural analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127 329–340

    Article  CAS  Google Scholar 

  • Smock RG, Rivoire O, Russ WP, et al. 2010 An interdomain sector mediating allostery in hsp70 molecular chaperones. Mol. Syst. Biol. 6 414

    Article  Google Scholar 

  • Socci ND and Onuchic JN 1994 Folding kinetics of protein like heteropolymers. J. Chem. Phys. 101 1519–1528

    Article  CAS  Google Scholar 

  • Stefan MI, Edelstein SJ and Nov`ere NL2008 An allosteric model of calmodulin explains differential activation of pp2b and camkii. Proc. Natl. Acad. Sci. USA 105 10768–10773

  • Stehle T and Schulz GE 1992 Refined structure of the complex between guanylate kinase and its substrate gmp at 2·0 are solution. J. Mol. Biol. 224 1127–1141

    Article  CAS  Google Scholar 

  • Tlusty T, Libchaber A and Eckmann J-P 2017 Physical model of the genotype-to-phenotype map of proteins. Phys. Rev. X 7 021037

    Google Scholar 

  • Tsai C-J, Ma B and Nussinov R 1999 Folding and binding cascades: Shifts in energy landscapes. Proc. Natl. Acad. Sci. USA 96 9970–9972

    Article  CAS  Google Scholar 

  • Weis WI and Kobilka BK 2018 The molecular basis of G protein-coupled receptor activation. Annu. Rev. Biochem. 87 897–919

    Article  CAS  Google Scholar 

  • Yan L, Ravasio R, Brito C and Wyart M 2017 Architecture and coevolution of allosteric materials. Proc. Natl. Acad. Sci. USA 114 2526–2531

    Article  CAS  Google Scholar 

  • Yan L, Ravasio R, Brito C and Wyart M 2018 Principles for optimal cooperativity in allosteric materials. Biophys. J. 114 2787–2798

    Article  CAS  Google Scholar 

Download references

Acknowledgements

It is a pleasure to present this article as part of the thematic issue titled "Emergent dynamics of biological networks" in honor of Prof. Somdatta Sinha. At a time when Theoretical Biology was not very popular in India, it was scientists like Somdatta who bravely kept the intellectual flame burning. Somdatta continues to be a gracious mentor to the younger generation of biophysicists.

MR acknowledges support from the Department of Atomic Energy (India), under project no. RTI4006, and the Simons Foundation (Grant No. 287975).

MR and SS acknowledge the award of JC Bose Fellowships, JCB/2018/000030 and JBR/2020/000015, respectively, from SERB-DST, India. AS thanks the Department of Science and Technology, India, for the early career reward (ECR) grant. MT acknowledges the research fellowship from the Department of Biotechnology, India. This research was also supported by the Department of Biotechnology, Government of India, in the form of IISc-DBT partnership programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madan Rao.

Additional information

Corresponding editor: Susmita Roy

This article is part of the Topical Collection: Emergent dynamics of biological networks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathy, M., Srivastava, A., Sastry, S. et al. Protein as evolvable functionally constrained amorphous matter. J Biosci 47, 73 (2022). https://doi.org/10.1007/s12038-022-00313-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-022-00313-3

Keywords

Navigation