Skip to main content

Advertisement

Log in

Identification of perturbed pathways rendering susceptibility to tuberculosis in type 2 diabetes mellitus patients using BioNSi simulation of integrated networks of implicated human genes

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

In type 2 diabetes mellitus (T2DM) patients, chronic hyperglycemia and inflammation underlie susceptibility to tuberculosis (TB) and result in poor TB control. Here, an integrative pathway-based approach is used to investigate perturbed pathways in T2DM patients that render susceptibility to TB. We obtained 36 genes implicated in type 2 diabetes-associated tuberculosis (T2DMTB) from the literature. Gene expression analysis on T2DM patient data (GSE26168) showed that DEFA1 is differentially expressed at Padj<0.05. The human host TB susceptibility genes TNFRSF10A, MSRA, GPR148, SLC37A3, PXK, PROK2, REV3L, PGM1, HIST3H2A, PLAC4, LETM2, and EMP2 and hsa-miR-146a microRNA were also differentially expressed at Padj<0.05. We included all these genes and added the remaining 28 genes from the T2DMTB set and the remaining differentially expressed genes at Padj<0.05 in STRING and obtained a well-connected network with high confidence score (≥0.7). Further, we extracted the KEGG pathways at FDR<0.05 and retained only the diabetes and TB pathways. The network was simulated with BioNSi using gene expression data. It is evident from BioNSi analysis that the NF-kappa B and Toll-like receptor pathways are commonly perturbed with high ranking in multiple gene expression datasets of type 2 diabetes versus healthy controls. The other pathways, necroptosis pathway and FoxO signalling pathway, appear perturbed with high ranking in different gene expression datasets. These pathways likely underlie susceptibility to TB in T2DM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Agarwal AK, Ginisha G, Preeti G, et al. 2016 The association between diabetes and tuberculosis may be the next challenge for global tuberculosis control worldwide. Indian J. Endocrinol. Metab. 20 732–733

    Article  Google Scholar 

  • Andrade BB, Kumar NP, Sridhar R, et al. 2014 Heightened plasma levels of heme oxygenase-1 and tissue inhibitor of metalloproteinase-4 as well as elevated peripheral neutrophil counts are associated with TB-diabetes comorbidity. Chest 145 1244–1254

    Article  CAS  Google Scholar 

  • Balasubramanyam M, Aravind S, Gokulakrishnan K, et al. 2011 Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes. Mol. Cell. Biochem. 351 197–205

    Article  CAS  Google Scholar 

  • Ban T, Sato GR and Tamura T 2018 Regulation and role of the transcription factor IRF5 in innate immune responses and systemic lupus erythematosus. Int. Immunol. 30 529–536

    Article  CAS  Google Scholar 

  • Barrett T, Suzek TO, Troup DB, et al. 2005 NCBI GEO: mining millions of expression profiles—database and tools. Nucleic Acids Res. 33 D562–D566

    Article  CAS  Google Scholar 

  • Bouzeyen R, Haoues M, Barbouche M-R, et al. 2019 FOXO3 transcription factor regulates IL-10 expression in Mycobacteria-infected macrophages, tuning their polarization and the subsequent adaptive immune response. Front. Immunol. 10 2922

    Article  CAS  Google Scholar 

  • Chaudhry LA, Essa EB, Al-Solaiman S, et al. 2012 Prevalence of diabetes type-2 and pulmonary tuberculosis among Filipino and treatment outcomes: a surveillance study in the Eastern Saudi Arabia. Int. J. Mycobacteriol. 1 106–109

    Article  Google Scholar 

  • Cooper AM, Mayer-Barber KD and Sher A 2011 Role of innate cytokines in mycobacterial infection. Mucosal Immunol. 4 252–260

    Article  CAS  Google Scholar 

  • Dennis G, Sherman BT, Hosack DA, et al. 2003 DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 4 R60

    Article  Google Scholar 

  • Dinarello CA 2000 Proinflammatory cytokines. Chest 118 503–508

    Article  CAS  Google Scholar 

  • Du P, Kibbe WA and Lin SM 2008 lumi: a pipeline for processing Illumina microarray. Bioinformatics 24 1547–1548

    Article  CAS  Google Scholar 

  • Dubey RK 2016 Assuming the role of mitochondria in mycobacterial infection. Int. J. Mycobacteriol. 5 379–383

    Article  Google Scholar 

  • Faurholt-Jepsen D, Range N, PrayGod G, et al. 2011 Diabetes Is a risk factor for pulmonary tuberculosis: a case-control study from Mwanza, Tanzania. Plos One 6 e24215

    Article  CAS  Google Scholar 

  • Gonzalez-Curiel I, Castañeda-Delgado J, Lopez-Lopez N, et al. 2011 Differential expression of antimicrobial peptides in active and latent tuberculosis and its relationship with diabetes mellitus. Hum. Immunol. 72 656–662

    Article  CAS  Google Scholar 

  • Harries AD, Kumar AMV, Satyanarayana S, et al. 2016 Addressing diabetes mellitus as part of the strategy for ending TB. Transact. R. Soc. Trop. Med. Hygiene 110 173–179

    Article  Google Scholar 

  • Harris J, De Haro SA, Master SS, et al. 2007 T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27 505–517

    Article  CAS  Google Scholar 

  • Herrera MT, Gonzalez Y, Hernández-Sánchez F, et al. 2017 Low serum vitamin D levels in type 2 diabetes patients are associated with decreased mycobacterial activity. BMC Infect. Dis. 17 610

    Article  Google Scholar 

  • Isserlin R, Merico D, Voisin V, et al. 2014 Enrichment map—a Cytoscape app to visualize and explore OMICs pathway enrichment results. F1000Research 3 141

    Article  Google Scholar 

  • Jayachandran R, Sundaramurthy V, Combaluzier B, et al. 2007 Survival of Mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin. Cell 130 37–50

    Article  CAS  Google Scholar 

  • Jeon CY and Murray MB 2008 Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. PLoS Med. 5 e152

    Article  Google Scholar 

  • Kapur A and Harries AD 2013 The double burden of diabetes and tuberculosis – public health implications. Diab. Res. Clin. Pract. 101 10–19

    Article  Google Scholar 

  • Karachunskiĭ MA, Gergert VI and Iakovleva OB 1997 Specific features of cellular immunity of pulmonary tuberculosis in patients with diabetes mellitus. Problemy Tuberkuleza 6 59–60

    Google Scholar 

  • Keikha M, Shabani M, Navid S, et al. 2018 What is the role of “T reg Cells” in tuberculosis pathogenesis? Indian J. Tuberculosis 65 360–362

    Article  Google Scholar 

  • Killick KE, Ní Cheallaigh C, O’Farrelly C, et al. 2013 Receptor-mediated recognition of mycobacterial pathogens. Cell. Microbiol. 15 1484–1495

    Article  CAS  Google Scholar 

  • Kumar D, Nath L, Kamal MA, et al. 2010 Genome-wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis. Cell 140 731–743

    Article  CAS  Google Scholar 

  • Kumar NP, Banurekha VV, Nair D, et al. 2015a Type 2 diabetes—tuberculosis co-morbidity is associated with diminished circulating levels of IL-20 subfamily of cytokines. Tuberculosis 95 707–712

    Article  CAS  Google Scholar 

  • Kumar NP, Sridhar R, Banurekha VV, et al. 2013 Type 2 diabetes mellitus coincident with pulmonary tuberculosis is associated with heightened systemic type 1, type 17, and other proinflammatory cytokines. Ann. Am. Thoracic Soc. 10 441–449

    Article  Google Scholar 

  • Kumar NP, Sridhar R, Nair D, et al. 2015b Type 2 diabetes mellitus is associated with altered CD8 (+) T and natural killer cell function in pulmonary tuberculosis. Immunology 144 677–686

    Article  CAS  Google Scholar 

  • Latorre I, Leidinger P, Backes C, et al. 2015 A novel whole-blood miRNA signature for a rapid diagnosis of pulmonary tuberculosis. Eur. Respir. J. 45 1173–1176

    Article  CAS  Google Scholar 

  • Li Y, Li D, Zhang J, et al. 2016 Association between toll-like receptor 4 and occurrence of type 2 diabetes mellitus susceptible to pulmonary tuberculosis in Northeast China. Stem Cells Int. 2016 8160318

    Article  Google Scholar 

  • Liu CH, Liu H and Ge B 2017 Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell. Mol. Immunol. 14 963–975

    Article  CAS  Google Scholar 

  • Lopez-Lopez N, Martinez AGR, Garcia-Hernandez MH, et al. 2018 Type-2 diabetes alters the basal phenotype of human macrophages and diminishes their capacity to respond, internalise, and control Mycobacterium tuberculosis. Memorias Do Instituto Oswaldo Cruz 113 e170326

    Article  Google Scholar 

  • Mandić-Rajčević S and Colosio C 2019 Methods for the identification of outliers and their influence on exposure assessment in agricultural pesticide applicators: a proposed approach and validation using biological monitoring. Toxics 7 E37

    Article  Google Scholar 

  • Martens GW, Arikan MC, Lee J, et al. 2007 Tuberculosis susceptibility of diabetic mice. Am. J. Respir. Cell Mol. Biol. 37 518–524

    Article  CAS  Google Scholar 

  • Mizumura K, Maruoka S, Gon Y, et al. 2016 The role of necroptosis in pulmonary diseases. Respir. Investig. 54 407–412

    Article  Google Scholar 

  • Monin L, Griffiths KL, Slight S, et al. 2015 Immune requirements for protective Th17 recall responses to Mycobacterium tuberculosis challenge. Mucosal Immunol. 8 1099–1109

    Article  CAS  Google Scholar 

  • Mustafa AS 2005 Recombinant and synthetic peptides to identify Mycobacterium tuberculosis antigens and epitopes of diagnostic and vaccine relevance. Tuberculosis 85 367–376

    Article  CAS  Google Scholar 

  • Niazi AK and Kalra S 2012 Diabetes and tuberculosis: a review of the role of optimal glycemic control. J. Diab. Metab. Disord. 11 28

    Article  Google Scholar 

  • O’Garra A, Redford PS, McNab FW, et al. 2013 The immune response in tuberculosis. Annu. Rev. Immunol. 31 475–527

    Article  Google Scholar 

  • Pajuelo D, Gonzalez-Juarbe N and Niederweis M 2020 NAD hydrolysis by the tuberculosis necrotizing toxin induces lethal oxidative stress in macrophages. Cell. Microbiol. 22 e13115

    Article  CAS  Google Scholar 

  • Parton A, McGilligan V, O’Kane M, et al. 2016 Computational modelling of atherosclerosis. Brief. Bioinform. 17 562–575

    Article  CAS  Google Scholar 

  • Pathak A, Jainarayanan AK and Brahmachari S 2019 Invariant genes in human genomes. bioRxiv https://doi.org/10.1101/739706

  • Pavan Kumar N, Anuradha R, Andrade BB, et al. 2013 Circulating biomarkers of pulmonary and extrapulmonary tuberculosis in children. Clin. Vaccine Immunol. 20 704–711

    Article  Google Scholar 

  • Povey S, Lovering R, Bruford E, et al. 2001 The HUGO Gene Nomenclature Committee (HGNC). Hum. Genet. 109 678–680

    Article  CAS  Google Scholar 

  • Qu H-Q, Rentfro AR, Lu Y, et al. 2012 Host susceptibility to tuberculosis: insights from a longitudinal study of gene expression in diabetes. Int. J. Tuberc. Lung Dis. 16 370–372

    Article  Google Scholar 

  • Rani J, Bhargav A, Datta M, et al. 2022 Identification of perturbed pathways rendering susceptibility to tuberculosis in type 2 diabetes mellitus patients using bionsi simulation of integrated network of implicated human genes. https://doi.org/10.21203/rs.3.rs-863821/v1

  • Rani J, Mittal I, Pramanik A, et al. 2017 T2DiACoD: a gene atlas of type 2 diabetes mellitus associated complex disorders. Sci. Rep. 7 6892

    Article  Google Scholar 

  • Rani J, Shah ABR and Ramachandran S 2015 pubmed.mineR: an R package with text-mining algorithms to analyse PubMed abstracts. J. Biosci. 40 671–682

    Article  Google Scholar 

  • Restrepo BI 2016 Diabetes and tuberculosis. Microbiol. Spectrum 4 4.6.48

  • Ritchie ME, Phipson B, Wu D, et al. 2015 Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43 e47

    Article  Google Scholar 

  • Robinson N, McComb S, Mulligan R, et al. 2012 Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. Nat. Immunol. 13 954–962

    Article  CAS  Google Scholar 

  • Sancristóbal B, Tastekin I and Dierssen M 2018 Computational models: how do they help to understand neurologic diseases? In Molecular-genetic and statistical techniques for behavioral and neural research (Ed) RT Gerlai (Academic Press) pp 105–131

  • Schmok E, Abad Dar M, Behrends J, et al. 2017 Suppressor of cytokine signaling 3 in macrophages prevents exacerbated interleukin-6-dependent arginase-1 activity and early permissiveness to experimental tuberculosis. Front. Immunol. 8 1537

    Article  Google Scholar 

  • Sharma PK, Saha PK, Singh A, et al. 2009 FoxP3+ regulatory T cells suppress effector T-cell function at pathologic site in miliary tuberculosis. Am. J. Respir. Crit. Care Med. 179 1061–1070

    Article  CAS  Google Scholar 

  • Stutz MD, Ojaimi S, Allison C, et al. 2018 Necroptotic signaling is primed in Mycobacterium tuberculosis-infected macrophages, but its pathophysiological consequence in disease is restricted. Cell Death Differ. 25 951–965

    Article  CAS  Google Scholar 

  • Syal K, Srinivasan A and Banerjee D 2015 VDR, RXR, Coronin-1 and Interferonγ levels in PBMCs of type-2 diabetes patients: molecular link between diabetes and tuberculosis. Indian J. Clin. Biochem. 30 323–328

    Article  CAS  Google Scholar 

  • Szklarczyk D, Morris JH, Cook H, et al. 2017 The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 45 D362–D368

    Article  CAS  Google Scholar 

  • Tegnér JN, Compte A, Auffray C, et al. 2009 Computational disease modeling – fact or fiction? BMC Syst. Biol. 3 56

    Article  Google Scholar 

  • Trentini MM, de Oliveira FM, Kipnis A, et al. 2016 The role of neutrophils in the induction of specific Th1 and Th17 during vaccination against tuberculosis. Front. Microbiol. 7 898

    Article  Google Scholar 

  • Tsukaguchi K, Yoneda T, Yoshikawa M, et al. 1992 Case study of interleukin-1 beta, tumor necrosis factor alpha and interleukin-6 production peripheral blood monocytes in patients with diabetes mellitus complicated by pulmonary tuberculosis. Kekkaku [tuberculosis] 67 755–760

    CAS  Google Scholar 

  • Via LE, Deretic D, Ulmer RJ, et al. 1997 Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab5 and rab7. J. Biol. Chem. 272 13326–13331

    Article  CAS  Google Scholar 

  • Xia J, Gill EE and Hancock REW 2015 NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat. Protocol. 10 823–844

    Article  CAS  Google Scholar 

  • Yeheskel A, Reiter A, Pasmanik-Chor M, et al. 2017 Simulation and visualization of multiple KEGG pathways using BioNSi. F1000Research 6 2120

  • Zhang X, Huang T, Wu Y, et al. 2017 Inhibition of the PI3K-Akt-mTOR signaling pathway in T lymphocytes in patients with active tuberculosis. Int. J. Infect. Dis. 59 110–117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our lab members for their useful feedback. JR acknowledges ICMR (Indian Council of Medical Research) for Senior Research Fellowship (File No. BIC/11 (21)/2015). SR’s work is supported in part by a grant from ICMR (No. BIC/5 (09)/Indo-Russian/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasan Ramachandran.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interests.

Additional information

Corresponding editor: Umesh Varshney

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, J., Bhargav, A., Seth, S. et al. Identification of perturbed pathways rendering susceptibility to tuberculosis in type 2 diabetes mellitus patients using BioNSi simulation of integrated networks of implicated human genes. J Biosci 47, 69 (2022). https://doi.org/10.1007/s12038-022-00309-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-022-00309-z

Keywords

Navigation