Skip to main content

Re-reading the genetic code: The evolutionary potential of frameshifting in time

This is a preview of subscription content, access via your institution.

References

  • Atkins JF and Baranov PV 2013 Molecular biology: Antibiotic re-frames decoding. Nature 503 478–479

    CAS  Article  Google Scholar 

  • Atkins JF, Loughran G, Bhatt PR, Firth AE and Baranov PV 2016 Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res. 44 7007–7078

    PubMed  PubMed Central  Google Scholar 

  • Baranov PV, Gesteland RF and Atkins JF 2002 Release factor 2 frameshifting sites in different bacteria. EMBO Rep. 3 373–377

    CAS  Article  Google Scholar 

  • Baranov PV, Atkins JF and Yordanova MM 2015 Augmented genetic decoding: global, local and temporal alterations of decoding processes and codon meaning. Nat. Rev. Genet. 16 517–529

    CAS  Article  Google Scholar 

  • Chaijarasphong T, Nichols RJ, Kortright KE, et al. 2016 Programmed ribosomal frameshifting mediates expression of the alpha-carboxysome. J. Mol. Biol. 428 153–164

    CAS  Article  Google Scholar 

  • Coffino P 2001 Regulation of cellular polyamines by antizyme. Nat. Rev. Mol. Cell. Biol. 2 188–194

    CAS  Article  Google Scholar 

  • Cook GM, Brown K, Shang P, et al. 2022 Ribosome profiling of porcine reproductive and respiratory syndrome virus reveals novel features of viral gene expression. eLife 11 e75668

    Article  Google Scholar 

  • Dinman JD 2012 Control of gene expression by translational recoding. Adv. Protein Chem. Struct. Biol. 86 129–149

    CAS  Article  Google Scholar 

  • Farabaugh PJ 1996 Programmed translational frameshifting. Microbiol. Rev. 60 103–134

    CAS  Article  Google Scholar 

  • Gupta P, Kannan K, Mankin AS and Vazquez-Laslop N 2013 Regulation of gene expression by macrolide-induced ribosomal frameshifting. Mol. Cell 52 629–642

    CAS  Article  Google Scholar 

  • Huseby DL, Brandis G, PraskiAlzrigat L and Hughes D 2020 Antibiotic resistance by high-level intrinsic suppression of a frameshift mutation in an essential gene. Proc. Natl. Acad. Sci. USA 117 3185–3191

    CAS  Article  Google Scholar 

  • Ivanova NN, Schwientek P, Tripp HJ, et al. 2014 Stop codon reassignments in the wild. Science 344 909–913

    CAS  Article  Google Scholar 

  • Jacks T and Varmus HE 1985 Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. Science 230 1237–1242

    CAS  Article  Google Scholar 

  • Karacostas V, Wolffe EJ, Nagashima K, Gonda MA and Moss B 1993 Overexpression of the HIV-1 gag-pol polyprotein results in intracellular activation of HIV-1 protease and inhibition of assembly and budding of virus-like particles. Virology 193 661–671

    CAS  Article  Google Scholar 

  • Korniy N, Goyal A, Hoffmann M, et al. 2019 Modulation of HIV-1 Gag/Gag-Pol frameshifting by tRNA abundance. Nucleic Acids Res. 47 5210–5222

    CAS  Article  Google Scholar 

  • Kovacs E, Tompa P, Liliom K and Kalmar L 2010 Dual coding in alternative reading frames correlates with intrinsic protein disorder. Proc. Natl. Acad. Sci. USA 107 5429–5434

    CAS  Article  Google Scholar 

  • Li Y, Treffers EE, Napthine S, et al. 2014 Transactivation of programmed ribosomal frameshifting by a viral protein. Proc. Natl. Acad. Sci. USA 111 E2172–E2181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ling J, O’Donoghue P and Soll D 2015 Genetic code flexibility in microorganisms: novel mechanisms and impact on physiology. Nat. Rev. Microbiol. 13 707–721

    CAS  Article  Google Scholar 

  • Malarkannan S, Horng T, Shih PP, Schwab S and Shastri N 1999 Presentation of out-of-frame peptide/MHC class I complexes by a novel translation initiation mechanism. Immunity 10 681–690

    CAS  Article  Google Scholar 

  • Napthine S, Ling R, Finch LK, et al. 2017 Protein-directed ribosomal frameshifting temporally regulates gene expression. Nat. Commun. 8 15582

    CAS  Article  Google Scholar 

  • Russell RD and Beckenbach AT 2008 Recoding of translation in turtle mitochondrial genomes: programmed frameshift mutations and evidence of a modified genetic code. J. Mol. Evol. 67 682–695

    CAS  Article  Google Scholar 

  • Schwab SR, Li KC, Kang C and Shastri N 2003 Constitutive display of cryptic translation products by MHC class I molecules. Science 301 1367–1371

    CAS  Article  Google Scholar 

  • Shehu-Xhilaga M, Crowe SM and Mak J 2001 Maintenance of the Gag/Gag-Pol ratio is important for human immunodeficiency virus type 1 RNA dimerization and viral infectivity. J. Virol. 75 1834–1841

    CAS  Article  Google Scholar 

  • Starck SR, Ow Y, Jiang V, et al. 2008 A distinct translation initiation mechanism generates cryptic peptides for immune surveillance. PLoS One 3 e3460

    Article  Google Scholar 

  • Tse H, Cai JJ, Tsoi HW, Lam EP and Yuen KY 2010 Natural selection retains overrepresented out-of-frame stop codons against frameshift peptides in prokaryotes. BMC Genom. 11 491

    Article  Google Scholar 

  • Yanagida H, Gispan A, Kadouri N, et al. 2015 The evolutionary potential of phenotypic mutations. PLoS Genet. 11 e1005445

    Article  Google Scholar 

  • Yordanova MM and Baranov PV 2022 A frameshift in time. eLife 11 e78373

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laasya Samhita.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Samhita, L. Re-reading the genetic code: The evolutionary potential of frameshifting in time. J Biosci 47, 49 (2022). https://doi.org/10.1007/s12038-022-00289-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-022-00289-0

Keywords

  • Decoding
  • frameshift
  • genetic code
  • reading frame
  • ribosomes