Skip to main content

Advertisement

Log in

Draft genome sequence and functional analysis of Lysinibacillus xylanilyticus t26, a plant growth-promoting bacterium isolated from Capsicum chinense rhizosphere

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Capsicum chinense is the chilli species containing the highest amount of capsaicin, and is an important traditional spice crop of Northeast India. Capsaicinoids derived from C. chinense are used in anticancer and anti-obesity treatments, as temperature regulators, in pain therapy, and as antioxidants. The current production and yield are very low due to the lack of organized cultivation and scientific inputs, and various plant diseases. Synthetic pesticides are frequently applied to boost yields, which creates potential risks to the environment, crops, and humans. The use of plant growth-promoting rhizobacteria is an alternative strategy in crop disease management to reduce the dependency on agrochemicals, which have detrimental effects on the environment. Lysinibacillus xylanilyticus t26 isolated from the C. chinense rhizosphere has shown good prospects in plant growth promotion and biocontrol. It showed strong antagonistic activity against Pythium ultimum ITCC 1650, Rhizoctonia solani ITCC 6491, and Fusarium oxysporum ITCC 6246. The draft genome sequencing of L. xylanilyticus t26 yielded a total of 5.69 Mbp with a G+C content of 36.80%. Genome analysis revealed that L. xylanilyticus t26 is very similar to L. xylanilyticus MH683160.1, and is phylogenetically related to L. xylanilyticus IBBPo7. Bioinformatics analysis predicted that it harbored type III polyketides, non-ribosomal peptides, terpenes, and lantibiotics including cerecidin, bacteriocins, siderophores, and thiopeptides, which are important traits of rhizobacteria for the utilization of minerals and to compete with other microbes for food. The strain t26 is a potential biocontrol agent for soil-borne fungal diseases. In this study, we derived the possible siderophore production pathways through the analysis of L. xylanilyticus t26 draft genome and plant growth response bioassays. The availability of genome data provides information that this draft genome harbored a siderophore BGC, which is 33% similar to petrobactin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Agrawal T and Kotasthane AS 2009 A simple medium for screening chitinase activity of Trichoderma spp; in Methods of molecular identification and laboratory protocols (International Sub commission on Trichoderma and Hypocrea Taxonomy, ISTH)

  • Allen GC, Flores-Vergara MA, Krasynanski S, Kumar S and Thompson WF 2006 A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat. Protoc. 1 2320–2325

    Article  CAS  PubMed  Google Scholar 

  • Beneduzi A, Ambrosini A and Passaglia LMP 2012 Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 54 1044–1051

    Article  Google Scholar 

  • Blin K, Shaw S, Steinke K, et al. 2019 AntiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47 W81–W87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloemberg GV and Lugtenberg BJ 2001 Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant. Biol. 4 343–350

    Article  CAS  PubMed  Google Scholar 

  • Brettin T, Davis JJ, Disz T, Edwards RA and Gerdes S 2015 RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 5 8365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brian FP, Jung YL, Ravindranadh VS, et al. 2007 Characterization and analysis of early enzymes for petrobactin biosynthesis in Bacillus anthracis. Biochemistry 46 4147–4157

    Article  CAS  Google Scholar 

  • Bric JM, Bostock RM and Silverstone SE 1991 Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl. Environ. Microbiol. 57 535–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brock TD 1999 Milestones in microbiology 1546–1940, 2nd editon (ASM Press) pp 215–218

  • Burkett-Cadena M, Sastoque L, Cadena J and Dunlap CA 2019 Lysinibacillus capsici sp. nov, isolated from the rhizosphere of a pepper plant. Antonie Van Leeuwenhoek 112 1161–1167

    Article  CAS  PubMed  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, et al. 2009 BLAST+: architecture and applications. BMC Bioinfor. 10 421–430

    Article  CAS  Google Scholar 

  • Chikhi R and Medvedev P 2014 Informed and automated k-mer size selection for genome assembly. Bioinformatics 30 31–37

    Article  CAS  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, et al. 2005 Blast2go: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21 3674–3676

    Article  CAS  Google Scholar 

  • Crosa JH and Walsh CT 2002 Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev. 66 223–249

    Article  CAS  PubMed  Google Scholar 

  • Darling AC, Mau B, Blattner FR and Perna NT 2004 Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genom. Res. 7 1394–1403

    Article  Google Scholar 

  • Edgar RC 2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32 1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etesami H, Alikhani HA and Hosseini HM 2015 Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth-promoting agents. MethodsX 2 72–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Fokkema JN and Dickinson T 1976 Antagonism between fungal saprophytes and pathogens on aerial plant; in Microbiology of aerial plant surfaces (Academic Press) pp 487–505

  • García CA, De Rossi BP, Alcaraz E, Vay C and Franco M 2012 Siderophores of Stenotrophomonas maltophilia: detection and determination of their chemical nature. Rev. Argent. Microbiol. 44 150–154

    PubMed  Google Scholar 

  • Glick BR 2012 Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012 963401

  • Gunathilake KDPP, Ranaweera KKDS and Rupasinghe HPV 2018 Influence of boiling, steaming and frying of selected leafy vegetables on the in vitro anti-inflammation associated biological activities. Plants 7 22

    Article  PubMed Central  CAS  Google Scholar 

  • Gupta A, Gopal M, Thomas GV, et al. 2014 Whole genome sequencing and analysis of plant growth-promoting bacteria isolated from the rhizosphere of plantation crops coconut, cocoa and arecanut. PLoS One 9 e104259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hardoim PR, Van O, Verbeek LS, Van E and lsas JD, 2008 Properties of bacterialendophytes and their proposed role in plant growth. Trends Microbiol. 16 463–471

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Baldani JI, Martin D, et al. 2006 Proteobacteria alpha and beta subclasses. The Prokaryotes V (Springer Verlag, New York, USA) pp 115–140

  • Hayat R, Ahmed I, Paek J, et al. 2014 Lysinibacillus composti sp. nov., isolated from compost. Ann. Microbiol. 64 1081–1088

    Article  CAS  Google Scholar 

  • Hilda R and Fraga R 2000 Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech. Adv. 17 319–359

    Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT and Williams ST 1994 Bergey's manual of determinative bacteriology, 9th edition (Lippincott Williams & Wilkins)

  • Hyder S, Gondal AS, Rizvi ZF, et al. 2020 Characterization of native plant growth-promoting rhizobacteria and their anti-oomycete potential against Phytophthora capsici affecting chilli pepper (Capsicum annum L.). Sci. Rep. 10 3859

    Article  CAS  Google Scholar 

  • Jason RG and Paul S 2008 The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res. 36 W181–W184

    Article  CAS  Google Scholar 

  • Joshi N and Fass J 2011 Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33)

  • Jung YL, Brian KJ, Karla DP, et al. 2007 Biosynthetic analysis of the petrobactin siderophore pathway from Bacillus anthracis. J. Bacteriol. 189 1698–1710

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Okuno Y and Hattori M 2004 The KEGG resource for deciphering the genome. Nucleic Acids Res. 32 D277–D280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Sato Y and Morishima K 2016 BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428 726–731

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW and Schroth MN 1978 Plant growth-promoting rhizobacteria on radishes. 4th Int. Conf. Plant Pathogenic Bacter Station de Pathologie Vegetale et Phytobacteriologie, INRA, Angers, France. pp 879–882

  • Korostin D, Kulemin N, Naumov V, et al. 2020 Comparative analysis of novel MGISEQ-2000 sequencing platform vs Illumina HiSeq 2500 for whole-genome sequencing. PLoS One 15 e0230301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köster W 2001 ABC transporter-mediated uptake of iron, siderophores, heme and vitamin B12. Res. Microbiol. 152 291–301

    Article  PubMed  Google Scholar 

  • Lee CS, Jung YT, Park S, Oh TK and Yoon JH 2010 Lysinibacillus xylanilyticus sp. nov., a xylan-degrading bacterium isolated from forest humus. Int. J. Syst. Evol. Microbiol. 60 281–286

    Article  CAS  PubMed  Google Scholar 

  • Liu GH, Liu B, Wang JP, Che JM and Zheng XF 2015 Draft genome sequence of type strain Lysinibacillus xylanilyticus DSM 23493T. Gen. Announc. 3 5

    Google Scholar 

  • Loscar ME, Huptas C, Wenning M, Sieber V and Schmida J 2016 Draft genome sequence of Lysinibacillus xylanilyticus SR-86. Gen. Announc. 4 6

    Google Scholar 

  • Louden BC, Haarmann D and Lynne AM 2011 Use of blue agar CAS assay for siderophore detection. J. Microbiol. Biol. Educ. 12 51

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowe TM and Eddy SR 1997 tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25 955–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugtenberg B and Kamilova F 2009 Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63 541–556

    Article  CAS  PubMed  Google Scholar 

  • Luo R, Liu B, Xie Y, Li Z and Huang W 2012 SOAP denovo 2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1 18

    Article  PubMed  PubMed Central  Google Scholar 

  • Malangmeih L, Dey G and Sagolsem S 2015 Rural livelihood system in Manipur with special reference to cultivation of king chilli L. J. Crop Weed. 11 144–151

    Google Scholar 

  • Marchesi JR, Sato T, Weightman AJ, et al. 1998 Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 64 795–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markowitz VM, Chen IM, Palaniappan K, et al. 2010 The integrated microbial genomes system: an expanding comparative analysis resource. Nucleic Acids Res. 38 D382–D390

    Article  CAS  PubMed  Google Scholar 

  • Martin M 2011 Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet J. 17 10–17

    Article  Google Scholar 

  • Mathur R, Dangi RS, Dass SC and Malhotra RC 2000 The hottest chilli variety in India. Curr. Sci. 79 287–288

    Google Scholar 

  • Matthew GB, Lindsey O-H, Lange AJ, James MB and Linda LK 2013 Plant monocultures produce more antagonistic soil Streptomyces communities than high-diversity plant communities. Soil Biol. Biochem. 65 304e312

    Google Scholar 

  • Meghvansi MK, Siddiqui S, Khan MH, et al. 2010 Naga chilli: a potential source of capsaicinoids with broad-spectrum ethnopharmacological applications. J. Ethnopharmacol. 132 1–14

    Article  CAS  PubMed  Google Scholar 

  • Miguel AA and Clara IN 2003 Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems. Soil Tillage Res. 72 203–211

    Article  Google Scholar 

  • Mukherjee S, Stamatis D, Bertsch J, et al. 2021 Genomes online database (GOLD) vol 8: overview and updates. Nucleic Acids Res. 49 D723–D733

    Article  CAS  PubMed  Google Scholar 

  • Nautiyal CS 1999 An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170 265–270

    Article  CAS  PubMed  Google Scholar 

  • Ngashangva N, Mukherjee P, Sharma KC, Kalita MC and Indira S 2021 Analysis of antimicrobial peptide metabolome of bacterial endophyte isolated From traditionally used medicinal plant Millettia pachycarpa Benth. Front. Microbiol. 12 656896

    Article  PubMed  PubMed Central  Google Scholar 

  • Okoli CO, Akah PA, Onuoha NJ, et al. 2008 Acanthus montanus: an experimental evaluation of the antimicrobial, anti-inflammatory and immunological properties of a traditional remedy for furuncles. BMC Complement. Altern. Med. 8 27

    Article  PubMed  PubMed Central  Google Scholar 

  • Overbeek R, Olson R, Pusch GD, et al. 2013 The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 42 D206–D214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patten CL and Glick BR 1996 Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42 207–220

    Article  CAS  PubMed  Google Scholar 

  • Sahoo D, Devi N, Ngashangva N, et al. 2019 Draft genome sequence of Arthrobacter globiformis mrc11, an antimicrobial agent isolated from a Khangkhui cave deposit. Microbiol. Res. Announ. 8 e01620-e11618

    Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, et al. 1988 Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239 487–491

    Article  CAS  Google Scholar 

  • Saitou N and Nei M 1987 The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4 406–425

    CAS  PubMed  Google Scholar 

  • Sanatombi K and Sharma GJ 2008 Capsaicin content and pungency of different Capsicum spp. cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 36 89–90

    Google Scholar 

  • Schwyn B and Neilands JB 1987 Universal assay for the detection and determination of siderophores. Anal. Biochem. 160 47–56

    Article  CAS  PubMed  Google Scholar 

  • Song JY, Kim HA, Kim JS, Kim SY and Jeong H 2012 Genome sequence of the plant growth-promoting rhizobacterium Bacillus sp. strain JS. J. Bacteriol. 194 3760–3761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephen FA, John CW, Michael GE, et al. 2005 Protein database searches using compositionally adjusted substitution matrices. FEBS J. 272 5101–5109

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A and Kumar S 2013 MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30 2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatusova T, DiCuccio M, Badretdin A, Chetvernin V and Nawrocki EP 2016 NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44 6614–6624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilmann W, Kai B, Srikanth D, Daniel K and Hyun UK 2015 AntiSMASH 3.0—a Comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. https://doi.org/10.1093/nar/gkv437

    Article  Google Scholar 

  • Vanitha SC and Umesha S 2011 Pseudomonas fluorescens mediated systemic resistance in tomato is driven through an elevated synthesis of defense enzymes. Biol. Plant. 55 317–322

  • Verma P, Yadav AN, Kazy SK, Saxena AK and Suman A 2014 Evaluating the diversity and phylogeny of plant growth-promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int. J. Curr. Microbiol. Appl. Sci. 3 432–447

    Google Scholar 

  • Vessey JK 2003 Plant growth-promoting rhizobacteria as biofertilizers. Plant Soil 255 571–586

    Article  CAS  Google Scholar 

  • Wang Y, Devin C-D, Chen G and Gu YQ 2015 OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 43 W78–W84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson K 2001 Preparation of genomic DNA from bacteria. Curr. Protoc. Mol Biol. https://doi.org/10.1002/0471142727.mb0204s56

    Article  PubMed  Google Scholar 

  • Wu GF, Wu XC, Xuan XD and Zhou XP 2006 Evaluation of nutrient limitation in aquatic ecosystems with nitrogen fixing bacteria. J. Environ. Sci. 18 537–542

    CAS  Google Scholar 

  • Xu H, Luo X, Qian J, et al. 2012 FastUniq: a fast de novo duplicates removal tool for paired short reads. PLoS One 7 e52249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye J, Fang L, Zheng H, et al. 2006 WEGO: a web tool for plotting GO annotations. Nucleic Acids Res. 34 293–297

    Article  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L and Miller W 2000 A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7 203–214

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Sun G, Chen X, Guo J and Xu M 2014 Lysinibacillus varians sp. nov., an endospore-forming bacterium with a filament-to-rod cell cycle. Int. J. Syst. Evol. Microbiol. 64 3644–3649

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Department of Biotechnology, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

SID, DS, and PKV conceived and designed the experiments. NN, PTA, and RMP wrote the paper. PTA, MP, CA, and CS isolated the genomic DNA from selected PGPR strains. Agri-genome Kerala performed the sequencing. NN, SID, and MP performed the analysis. SID, DS, and PKV provided technical advice, analysis support, and oversight.

Corresponding author

Correspondence to Indira Sarangthem.

Ethics declarations

The authors declared that they have no conflict of interest.

Additional information

Corresponding editor: Ashis Kumar Nandi

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 53364 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phazna, T.A., Ngashangva, N., Yentrembam, R.B.S. et al. Draft genome sequence and functional analysis of Lysinibacillus xylanilyticus t26, a plant growth-promoting bacterium isolated from Capsicum chinense rhizosphere. J Biosci 47, 36 (2022). https://doi.org/10.1007/s12038-022-00264-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-022-00264-9

Keywords

Profiles

  1. Ng Ngashangva