Skip to main content

Advertisement

Log in

Putative role of uncoupling proteins in mitochondria-nucleus communications and DNA damage response

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Mitochondria-nucleus communications and DNA damage response (DDR) play roles in cellular stress and closely associate with a range of diseases. Mitochondrial uncoupling proteins (UCPs) are capable of uncoupling mitochondrial oxidative phosphorylation and protecting against oxidative stress. However, the potential role of UCPs in DDR and DDR-related mitochondria-nucleus communications remains unknown. The review deduces UCPs functions in mitochondria-nucleus communications implicated in metabolite regulation (e.g., reactive oxygen species) and Ca2+ signaling, and in DDR (e.g., base excision repair, double-strand DNA break repair, mitophagy and nuclear DNA degradation). Represented are shared microRNAs that regulate UCPs and DDR. It would provide novel insight into UCPs-mediated mitochondria-nucleus communications and DDR, and potentially promote drug target identification, drug discovery and clinical therapy of DDR-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Alexeyev M, Shokolenko I, Wilson G and LeDoux S 2013 The maintenance of mitochondrial DNA integrity-critical analysis and update. Cold Spring Harb. Perspect Biol. 5 a012641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Annesley SJ and Fisher PR 2019 Mitochondria in Health and Disease. Cells 8 680

    Article  CAS  PubMed Central  Google Scholar 

  • Babbar M, Basu S, Yang B, Croteau DL and Bohr VA 2020 Mitophagy and DNA damage signaling in human aging. Mech. Ageing Dev. 186 111207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandyopadhyay S, Lane T, Venugopal R, Parthasarathy PT, Cho Y, et al. 2013 MicroRNA-133a-1 regulates inflammasome activation through uncoupling protein-2. Biochem. Biophys. Res. Commun. 439 407–412

    Article  CAS  PubMed  Google Scholar 

  • Bateman A, Martin MJ, Orchard S, Magrane M, Alpi E, et al. 2019 UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47 D506–D515

    Article  CAS  Google Scholar 

  • Bi X 2015 Mechanism of DNA damage tolerance. World J. Biol. Chem. 6 48–56

    Article  PubMed  PubMed Central  Google Scholar 

  • Bottai G, Pasculli B, Calin GA and Santarpia L 2014 Targeting the microRNA-regulating DNA damage/repair pathways in cancer. Expert Opin. Biol. Ther. 14 1667–1683

    Article  CAS  PubMed  Google Scholar 

  • Bouillaud F, Alves-Guerra MC and Ricquier D 2016 UCPs, at the interface between bioenergetics and metabolism. BBA-Mol. Cell Res. 1863 2443–2456

    CAS  Google Scholar 

  • Braun N, Klumpp D, Hennenlotter J, Bedke J, Duranton C, et al. 2015 UCP-3 uncoupling protein confers hypoxia resistance to renal epithelial cells and is upregulated in renal cell carcinoma. Sci. Rep. 5 13450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brookes PS, Parker N, Buckingham JA, Vidal-Puig A, Halestrap AP et al. 2008 UCPs-unlikely calcium porters. Nat. Cell Biol. 10 1235–1237; author reply 1237–1240

  • Cagin U and Enriquez JA 2015 The complex crosstalk between mitochondria and the nucleus: What goes in between? Int. J. Biochem. Cell Biol. 63 10–15

    Article  CAS  PubMed  Google Scholar 

  • Cai Z, Liu J, Bian H, Cai J and Guo X 2016 MiR-455 enhances adipogenic differentiation of 3T3-L1 cells through targeting uncoupling protein-1. Pharmazie 71 625–628

    CAS  PubMed  Google Scholar 

  • Chen X, Wang K, Chen J, Guo J, Yin Y, et al. 2009 In vitro evidence suggests that miR-133a-mediated regulation of uncoupling protein 2 (UCP2) is an indispensable step in myogenic differentiation. J. Biol. Chem. 284 5362–5369

    Article  CAS  PubMed  Google Scholar 

  • Chouchani ET, Kazak L, Jedrychowski MP, Lu GZ, Erickson BK, et al. 2016 Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature 532 112–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins Y, Chouchani ET, James AM, Menger KE, Cocheme HM, et al. 2012 Mitochondrial redox signalling at a glance. J. Cell Sci. 125 801–806

    Article  CAS  PubMed  Google Scholar 

  • Dan X, Babbar M, Moore A, Wechter N, Tian J, et al. 2020 DNA damage invokes mitophagy through a pathway involving Spata18. Nucleic Acids Res. 48 6611–6623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasgupta S 2019 Mitochondrion: I am more than a fuel server. Ann. Transl. Med. 7 594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Souza A, Wang JZ and Dehesh K 2017 Retrograde signals: integrators of interorganellar communication and orchestrators of plant development. Annu. Rev. Plant Biol. 68 85–108

    Article  PubMed  CAS  Google Scholar 

  • Donadelli M, Dando I, Fiorini C and Palmieri M 2014 UCP2, a mitochondrial protein regulated at multiple levels. Cell. Mol. Life Sci. 71 1171–1190

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg-Bord M and Schuldiner M 2017 Ground control to major TOM: mitochondria-nucleus communication. FEBS J. 284 196–210

    Article  CAS  PubMed  Google Scholar 

  • Esteves P, Pecqueur C, Ransy C, Esnous C, Lenoir V, et al. 2014 Mitochondrial retrograde signaling mediated by UCP2 inhibits cancer cell proliferation and tumorigenesis. Cancer Res. 74 3971–3982

    Article  CAS  PubMed  Google Scholar 

  • Fang EF, Kassahun H, Croteau DL, Scheibye-Knudsen M, Marosi K, et al. 2016 NAD+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metab. 24 566–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang EF, Scheibye-Knudsen M, Brace LE, Kassahun H, SenGupta T, et al. 2014 Defective mitophagy in XPA via PARP-1 hyperactivation and NAD+/SIRT1 reduction. Cell 157 882–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Tigano M and Sfeir A 2020 Safeguarding mitochondrial genomes in higher eukaryotes. Nat. Struct. Mol. Biol. 27 687–695

    Article  CAS  PubMed  Google Scholar 

  • Giglia-Mari G, Zotter A and Vermeulen W 2011 DNA damage response. Cold Spring Harb. Perspect. Biol. 3 a000745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harper ME, Antoniou A, Villalobos-Menuey E, Russo A, Trauger R, et al. 2002 Characterization of a novel metabolic strategy used by drug-resistant tumor cells. FASEB J. 16 1550–1557

    Article  CAS  PubMed  Google Scholar 

  • He M, Zhou W, Li C and Guo M 2016 MicroRNAs, DNA damage response, and cancer treatment. Int. J. Mol. Sci. 17 2087

    Article  PubMed Central  CAS  Google Scholar 

  • Jezek P, Holendova B, Garlid KD and Jaburek M 2018 Mitochondrial uncoupling proteins: Subtle regulators of cellular redox signaling. Antioxid. Redox Signal. 29 667–714

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jezek P, Holendova B and Plecita-Hlavata L 2020 Redox signaling from mitochondria: Signal propagation and its targets. Biomolecules 10 93

    Article  CAS  PubMed Central  Google Scholar 

  • Jiang L, Qiu W, Zhou Y, Wen P, Fang L, et al. 2013 A microRNA-30e/mitochondrial uncoupling protein 2 axis mediates TGF-β1-induced tubular epithelial cell extracellular matrix production and kidney fibrosis. Kidney Int. 84 285–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin X, Chen D, Zheng RH, Zhang H, Chen YP, et al. 2017 miRNA-133a-UCP2 pathway regulates inflammatory bowel disease progress by influencing inflammation, oxidative stress and energy metabolism. World J. Gastroenterol. 23 76–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaniak-Golik A and Skoneczna A 2015 Mitochondria-nucleus network for genome stability. Free Radic. Biol. Med. 82 73–104

    Article  CAS  PubMed  Google Scholar 

  • Kaul D, Sharma S and Garg A 2015 Mitochondrial uncoupling protein (UCP2) gene expression is regulated by miR-2909. Blood Cells Mol. Dis. 55 89–93

    Article  CAS  PubMed  Google Scholar 

  • Komakula SSB, Tumova J, Kumaraswamy D, Burchat N, Vartanian V, et al. 2018 The DNA repair protein OGG1 protects against obesity by altering mitochondrial energetics in white adipose tissue. Sci. Rep. 8 14886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krauss S, Zhang CY and Lowell BB 2005 The mitochondrial uncoupling-protein homologues. Nat. Rev. Mol. Cell Biol. 6 248–261

    Article  CAS  PubMed  Google Scholar 

  • Lee SR and Han J 2017 Mitochondrial nucleoid: Shield and switch of the mitochondrial genome. Oxid. Med. Cell Longev. 2017 8060949

    Article  PubMed  PubMed Central  Google Scholar 

  • Li CG, Mahon C, Sweeney NM, Verschueren E, Kantamani V, et al. 2019 PPARγ interaction with UBR5/ATMIN promotes DNA repair to maintain endothelial homeostasis. Cell Rep. 26 1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CH, Huang ZH, Dong XY, Zhang XQ, Li YH, et al. 2020 Inhibition of uncoupling protein 2 enhances the radiosensitivity of cervical cancer cells by promoting the production of reactive oxygen species. Oxid. Med. Cell Longev. 2020 5135893

    PubMed  PubMed Central  Google Scholar 

  • Lu X, Altshuler-Keylin S, Wang Q, Chen Y, Henrique Sponton C, et al. 2018 Mitophagy controls beige adipocyte maintenance through a Parkin-dependent and UCP1-independent mechanism. Sci. Signal. 11 eaap8526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mailloux RJ, Seifert EL, Bouillaud F, Aguer C, Collins S, et al. 2011 Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3. J. Biol. Chem. 286 21865–21875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meiliana A, Dewi NM and Wijaya A 2019 Mitochondria in health and disease. Indones. Biomed. J. 11 1–15

    Article  Google Scholar 

  • Michels G, Khan IF, Endres-Becker J, Rottlaender D, Herzig S, et al. 2009 Regulation of the human cardiac mitochondrial Ca2+ uptake by 2 different voltage-gated Ca2+ channels. Circulation 119 2435-U2445

    Article  CAS  PubMed  Google Scholar 

  • Monaghan RM and Whitmarsh AJ 2015 Mitochondrial proteins moonlighting in the nucleus. Trends Biochem. Sci. 40 728–735

    Article  CAS  PubMed  Google Scholar 

  • Motloch LJ, Gebing T, Reda S, Schwaiger A, Wolny M, et al. 2016a UCP3 regulates single-channel activity of the cardiac mCa1. J. Membr. Biol. 249 577–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motloch LJ, Larbig R, Gebing T, Reda S, Schwaiger A, et al. 2016b By regulating mitochondrial Ca2+-uptake UCP2 modulates intracellular Ca2+. PLoS One 11 e0148359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nissanka N, Minczuk M and Moraes CT 2019 Mechanisms of mitochondrial DNA deletion formation. Trends Genet. 35 235–244

    Article  CAS  PubMed  Google Scholar 

  • Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, et al. 2008 A mitochondrial protein compendium elucidates complex I disease biology. Cell 134 112–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi RP, Richa Kumar A, Tyagi MB and Sinha RP 2010 Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J. Nucleic Acids 2010 592980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ricquier D and Bouillaud F 2000 The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem. J. 345 161–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzuto R, De Stefani D, Raffaello A and Mammucari C 2012 Mitochondria as sensors and regulators of calcium signalling. Nat. Rev. Mol. Cell Bio. 13 566–578

    Article  CAS  Google Scholar 

  • Roos WP, Thomas AD and Kaina B 2016 DNA damage and the balance between survival and death in cancer biology. Nat. Rev. Cancer 16 20–33

    Article  CAS  PubMed  Google Scholar 

  • Rubattu S, Stanzione R, Bianchi F, Cotugno M, Forte M, et al. 2017 Reduced brain UCP2 expression mediated by microRNA-503 contributes to increased stroke susceptibility in the high-salt fed stroke-prone spontaneously hypertensive rat. Cell Death Dis. 8 e2891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan MT and Hoogenraad NJ 2007 Mitochondrial-nuclear communications. Annu. Rev. Biochem. 76 701–722

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Ramos C, Tierrez A, Fabregat-Andres O, Wild B, Sanchez-Cabo F, et al. 2011 PGC-1a regulates translocated in liposarcoma activity: role in oxidative stress gene expression. Antioxid. Redox Signal. 15 325–337

    Article  CAS  PubMed  Google Scholar 

  • Shaughnessy DT, McAllister K, Worth L, Haugen AC, Meyer JN, et al. 2014 Mitochondria, energetics, epigenetics, and cellular responses to stress. Environ. Health Perspect. 122 1271–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen B, Han S, Wang Y, Yang Z, Zou Z, et al. 2019 Bta-miR-152 affects intracellular triglyceride content by targeting the UCP3 gene. J. Anim. Physiol. Anim. Nutr. 103 1365–1373

    Article  CAS  Google Scholar 

  • Sun LL, Jiang BG, Li WT, Zou JJ, Shi YQ, et al. 2011 MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res. Clin. Pract. 91 94–100

    Article  CAS  PubMed  Google Scholar 

  • Tessitore A, Cicciarelli G, Del Vecchio F, Gaggiano A, Verzella D, et al. 2014 MicroRNAs in the DNA damage/repair network and cancer. Int. J. Genomics 2014 820248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trenker M, Malli R, Fertschai I, Levak-Frank S and Graier WF 2007 Uncoupling proteins 2 and 3 are fundamental for mitochondrial Ca2+ uniport. Nat. Cell Biol. 9 445–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villarroya F, Peyrou M and Giralt M 2017 Transcriptional regulation of the uncoupling protein-1 gene. Biochimie 134 86–92

    Article  CAS  PubMed  Google Scholar 

  • Vozza A, Parisi G, De Leonardis F, Lasorsa FM, Castegna A, et al. 2014 UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc. Natl. Acad. Sci. u. s. a. 111 960–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei W, Peng J and Shen T 2019 Rosuvastatin alleviates ischemia/reperfusion injury in cardiomyocytes by downregulating hsa-miR-24-3p to target upregulated uncoupling protein 2. Cell. Reprogram. 21 99–107

    Article  CAS  PubMed  Google Scholar 

  • Wouters MD, van Gent DC, Hoeijmakers JHJ and Pothof J 2011 MicroRNAs, the DNA damage response and cancer. Mutat. Res. 717 54–66

    Article  CAS  PubMed  Google Scholar 

  • Xing J, Chen M, Wood CG, Lin J, Spitz MR, et al. 2008 Mitochondrial DNA content: its genetic heritability and association with renal cell carcinoma. J. Natl. Cancer Inst. 100 1104–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong S, Patrushev N, Forouzandeh F, Hilenski L and Alexander RW 2015 PGC-1α modulates telomere function and DNA damage in protecting against aging-related chronic diseases. Cell Rep. 12 1391–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Fei X, Lu Y, Xu B, Ma Y, et al. 2019 miRNA-214 suppresses oxidative stress in diabetic nephropathy via the ROS/Akt/mTOR signaling pathway and uncoupling protein 2. Exp. Ther. Med. 17 3530–3538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Youle RJ and Narendra DP 2011 Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12 9–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu G, Wang J, Xu K and Dong J 2016 Dynamic regulation of uncoupling protein 2 expression by microRNA-214 in hepatocellular carcinoma. Biosci. Rep. 36 e00335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Yan H, Zhou P, Zhang Z, Liu J, et al. 2019 MicroRNA-152 promotes slow-twitch myofiber formation via targeting uncoupling protein-3 gene. Animals (basel) 9 669

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Numbers 31470716, 31000323 and 31070672) and the Natural Science Foundation of Jiangsu Province (Grant Number BK20131272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghai Li.

Additional information

Corresponding editor: BJ Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Y., Liu, C., Zhang, R. et al. Putative role of uncoupling proteins in mitochondria-nucleus communications and DNA damage response. J Biosci 46, 99 (2021). https://doi.org/10.1007/s12038-021-00224-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-021-00224-9

Keywords

Navigation