Skip to main content
Log in

β-Actin facilitates etoposide-induced p53 nuclear import

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

As a tumor suppressor, p53 preserves genomic integrity in eukaryotes. However, limited evidence is available for the p53 shuttling between the cytoplasm and nucleus. Previous studies have shown that β-actin polymerization negatively regulates p53 nuclear import through its interaction with p53. In this study, we found that DNA damage induces both β-actin and p53 accumulation in the nucleus. β-actin knockdown impaired the nuclear transport of p53. Additionally, β-actin could interact with p53 which was enhanced in response to genotoxic stress. Furthermore, N terminal deletion mutants of p53 shows reduced levels of association with β-actin. We further identified Ser15, Thr18 and Ser20 of p53 are critical to the β-actin: p53 interaction, which upon mutation into alanine abrogates the binding. Taken together, this study reveals that β-actin regulates the nuclear import of p53 through protein–protein interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

γH2AX:

phosphorylated histone H2AX

MDM2:

the Murine Double Minute 2 oncogene

Mot2:

mortalin 2

ETO:

etoposide

FBS:

fetal bovine serum

DAPI:

4′,6′-diamidino-2 phenylindole

References

  • Alarcon-Vargas D and Ronai Z 2002 p53-Mdm2–the affair that never ends. Carcinogenesis 23 541–547

    Article  CAS  Google Scholar 

  • Beckerman R and Prives C 2010 Transcriptional regulation by p53. Cold Spring Harb. Perspect. Biol. 2 a000935

    Article  Google Scholar 

  • Bullock AN, Henckel J, DeDecker BS, Johnson CM, Nikolova PV, Proctor MR, Lane DP and Fersht AR 1997 Thermodynamic stability of wild-type and mutant p53 core domain. Proc. Natl. Acad. Sci. USA 94 14338–14342

    Article  CAS  Google Scholar 

  • Giannakakou P, Sackett DL, Ward Y, Webster KR, Blagosklonny MV and Fojo T 2000 p53 is associated with cellular microtubules and is transported to the nucleus by dynein. Nat. Cell Biol. 2 709–717

    Article  CAS  Google Scholar 

  • Gottlieb TM and Oren M 1996 p53 in growth control and neoplasia. Biochim. Biophys. Acta 1287 77–102

    PubMed  Google Scholar 

  • Guettler S, Vartiainen MK, Miralles F, Larijani B and Treisman R 2008 RPEL motifs link the serum response factor cofactor MAL but not myocardin to Rho signaling via actin binding. Mol. Cell Biol. 28 732–742

    Article  CAS  Google Scholar 

  • Jiang M, Axe T, Holgate R, Rubbi CP, Okorokov AL, Mee T and Milner J 2001 p53 binds the nuclear matrix in normal cells: binding involves the proline-rich domain of p53 and increases following genotoxic stress. Oncogene 20 5449–5458

    Article  CAS  Google Scholar 

  • Joerger AC and Fersht AR 2010 The tumor suppressor p53: from structures to drug discovery. Cold Spring Harb. Perspect. Biol. 2 a000919

    Article  Google Scholar 

  • Kar S, Sakaguchi K, Shimohigashi Y, Samaddar S, Banerjee R, Basu G, Swaminathan V, Kundu TK and Roy S 2002 Effect of phosphorylation on the structure and fold of transactivation domain of p53. J. Biol. Chem. 277 15579–15585

    Article  CAS  Google Scholar 

  • Liu WL, Midgley C, Stephen C, Saville M and Lane DP 2001 Biological significance of a small highly conserved region in the N terminus of the p53 tumour suppressor protein. J. Mol. Biol. 313 711–731

    Article  CAS  Google Scholar 

  • Metcalfe S, Weeds A, Okorokov AL, Milner J, Cockman M and Pope B 1999 Wild-type p53 protein shows calcium-dependent binding to F-actin. Oncogene 18 2351–2355

    Article  CAS  Google Scholar 

  • O’Brate A and Giannakakou P 2003 The importance of p53 location: nuclear or cytoplasmic zip code? Drug Resist. Updat. 6 313–322

    Google Scholar 

  • Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC and Hainaut P 2002 The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 19 607–614

    Article  CAS  Google Scholar 

  • Polley S, Guha S, Roy NS, Kar S, Sakaguchi K, Chuman Y, Swaminathan V, Kundu T and Roy S 2008 Differential recognition of phosphorylated transactivation domains of p53 by different p300 domains. J. Mol. Biol. 376 8–12

    Article  CAS  Google Scholar 

  • Qi W, Chen H, Xiao T, Wang R, Li T, Han L and Zeng X 2016 Acetyltransferase p300 collaborates with chromodomain helicase DNA-binding protein 4 (CHD4) to facilitate DNA double-strand break repair. Mutagenesis 31 193–203

    Article  CAS  Google Scholar 

  • Saha T, Guha D, Manna A, Panda AK, Bhat J, Chatterjee S and Sa G 2016 G-actin guides p53 nuclear transport: potential contribution of monomeric actin in altered localization of mutant p53. Sci. Rep. 6 32626

    Article  CAS  Google Scholar 

  • Saha T, Kar RK and Sa G 2015 Structural and sequential context of p53: A review of experimental and theoretical evidence. Prog. Biophys. Mol. Biol. 117 250–263

    Article  CAS  Google Scholar 

  • Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A, Anderson CW and Appella E 1998 DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 12 2831–2841

    Article  CAS  Google Scholar 

  • Tian X, Qi W, Chen H, Zeng X, Han L and Mi D 2016 β-Actin regulates interleukin 6-induced p21 transcription by interacting with the Rpb5 and Rpb7 subunits of RNA polymerase II. Anim. Cell. Syst. 20 282–288

    Article  CAS  Google Scholar 

  • Wadhwa R, Takano S, Robert M, Yoshida A, Nomura H, Reddel RR, Mitsui Y and Kaul SC 1998 Inactivation of tumor suppressor p53 by mot-2, a hsp70 family member. J. Biol. Chem. 273 29586–29591

    Article  CAS  Google Scholar 

  • Waldman T, Kinzler KW and Vogelstein B 1995 p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 55 5187–5190

    CAS  PubMed  Google Scholar 

  • Wang L, Wang M, Wang S, Qi T, Guo L, Li J, Qi W, Ampah KK, Ba X and Zeng X 2013 Actin polymerization negatively regulates p53 function by impairing its nuclear import in response to DNA damage. PLoS One 8 e60179

    Article  CAS  Google Scholar 

  • Xu J, Reumers J, Couceiro JR, De Smet F, Gallardo R, Rudyak S, Cornelis A, Rozenski J, et al. 2011 Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat. Chem. Biol. 7 285–295

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of the Jilin Province Department of Science and Technology under Grant Number 20180520104JH; National Nature Science Foundation of China under Grant Number 31801182; and Natural Science Foundation of Changchun Normal University under Grant Numbers 2015-001 and 2016-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuzhen Ni.

Additional information

Communicated by Kundan Sengupta.

Corresponding editor: Kundan Sengupta

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, W., Li, J., Pei, X. et al. β-Actin facilitates etoposide-induced p53 nuclear import. J Biosci 45, 34 (2020). https://doi.org/10.1007/s12038-020-0004-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-020-0004-2

Keywords

Navigation