Skip to main content
Log in

Let-7a-5p represses proliferation, migration, invasion and epithelial-mesenchymal transition by targeting Smad2 in TGF-β2-induced human lens epithelial cells

Journal of Biosciences Aims and scope Submit manuscript

Abstract

Transforming growth factor β2 (TGF-β2)/Smad signaling is widely accepted as a key inducer of proliferation and epithelial-mesenchymal transition (EMT) of human lens epithelial cells (LECs), contributing to the development of posterior capsule opacification (PCO). Increasing evidence shows that microRNAs (miRNAs) play important roles in PCO pathogenesis. Herein, we aimed to explore the role and molecular mechanism of let-7a-5p on TGF-β2-induced proliferation and EMT in LECs. qRT-PCR was performed to detect the expression of let-7a-5p and Smad2 mRNA. Western blot was used to determine the Smad2 level and the induction of EMT. The targeted correlation between let-7a-5p and Smad2 was confirmed using dual-luciferase reporter and RNA immunoprecipitation assays. CCK-8 assay was employed to determine cell proliferation, and transwell assays were performed to assess cell migration and invasion. We found that TGF-β2 induced EMT of LECs, and TGF-β2 upregulated Smad2 expression and reduced let-7a-5p expression in LECs. Smad2 was a direct target of let-7a-5p. Moreover, let-7a-5p upregulation repressed proliferation, migration, invasion and EMT in TGF-β2-induced LECs. But, Smad2 expression restoration abrogated the inhibitory effect of let-7a-5p upregulation. In conclusion, our data indicated that let-7a-5p upregulation repressed TGF-β2-induced proliferation, migration, invasion and EMT at least partly by targeting Smad2 in LECs, highlighting that let-7a-5p might act as a promising therapeutic target to intervene to the progression of PCO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Abbreviations

EMT:

epithelial-mesenchymal transition

PCO:

posterior capsule opacification

LECs:

lens epithelial cells

TGF-β2:

transforming growth factor β2

miRNAs:

microRNAs

3′-UTR:

3′-untranslated region

RISC:

RNA-induced silencing complex

Ago:

Argonaute protein

SD:

standard deviation

References

  • Awasthi N, Guo S and Wagner BJ 2009 Posterior capsular opacification: a problem reduced but not yet eradicated. Arch. Ophthalmol. 127 555–562

    Article  Google Scholar 

  • Awasthi N and Wagner BJ 2006 Suppression of human lens epithelial cell proliferation by proteasome inhibition, a potential defense against posterior capsular opacification. Invest. Ophthalmol. Vis. Sci. 47 4482–4489

    Article  Google Scholar 

  • Bartel DP 2018 Metazoan MicroRNAs. Cell 173 20–51

    Article  CAS  Google Scholar 

  • Dawes LJ, Angell H, Sleeman M, Reddan JR and Wormstone IM 2007 TGFbeta isoform dependent Smad2/3 kinetics in human lens epithelial cells: a Cellomics analysis. Exp. Eye Res. 84 1009–1012

    Article  CAS  Google Scholar 

  • de Iongh RU, Wederell E, Lovicu FJ and McAvoy JW 2005 Transforming growth factor-beta-induced epithelial-mesenchymal transition in the lens: a model for cataract formation. Cells Tissues Organs 179 43–55

    Article  Google Scholar 

  • Derynck R and Budi EH 2019 Specificity, versatility, and control of TGF-beta family signaling. Sci. Signal 12 https://doi.org/10.1126/scisignal.aav5183

  • Dong N, Tang X and Xu B 2015 miRNA-181a inhibits the proliferation, migration, and epithelial-mesenchymal transition of lens epithelial cells. Invest. Ophthalmol. Vis. Sci. 56 993–1001

    Article  CAS  Google Scholar 

  • Fasihi-Ramandi M, Moridnia A, Najafi A and Sharifi M 2018 Inducing apoptosis and decreasing cell proliferation in human acute promyelocytic leukemia through regulation expression of CASP3 by let-7a-5p blockage. Indian J. Hematol. Blood Trans. 34 70–77

    Article  Google Scholar 

  • Findl O, Buehl W, Bauer P and Sycha T 2010 Interventions for preventing posterior capsule opacification. Cochrane Database Syst. Rev. Cd003738. https://doi.org/10.1002/14651858.cd003738.pub3

  • Gotoh N, Perdue NR, Matsushima H, Sage EH, Yan Q and Clark JI 2007 An in vitro model of posterior capsular opacity: SPARC and TGF-beta2 minimize epithelial-to-mesenchymal transition in lens epithelium. Invest. Ophthalmol. Vis. Sci. 48 4679–4687

    Article  Google Scholar 

  • Guo R, Meng Q, Guo H, Xiao L, Yang X, Cui Y and Huang Y 2016 TGF-beta2 induces epithelial-mesenchymal transition in cultured human lens epithelial cells through activation of the PI3K/Akt/mTOR signaling pathway. Mol. Med Rep. 13 1105–1110

    Article  CAS  Google Scholar 

  • Hales AM, Chamberlain CG, Dreher B and McAvoy JW 1999 Intravitreal injection of TGFbeta induces cataract in rats. Invest. Ophthalmol. Vis. Sci. 40 3231–3236

    CAS  PubMed  Google Scholar 

  • Hales AM, Schulz MW, Chamberlain CG and McAvoy JW 1994 TGF-beta 1 induces lens cells to accumulate alpha-smooth muscle actin, a marker for subcapsular cataracts. Curr. Eye Res. 13 885–890

    Article  CAS  Google Scholar 

  • Inatani M, Tanihara H, Katsuta H, Honjo M, Kido N and Honda Y 2001 Transforming growth factor-β 2 levels in aqueous humor of glaucomatous eyes. Graefes Arch. Clin. Exp. Ophthalmol. 239 109–113

    Article  CAS  Google Scholar 

  • Itoh S and ten Dijke P 2007 Negative regulation of TGF-beta receptor/Smad signal transduction. Curr. Opin. Cell Biol. 19 176–184

    Article  CAS  Google Scholar 

  • Iwakawa HO and Tomari Y 2015 The functions of microRNAs: mRNA decay and translational repression. Trends Cell Biol. 25 651–665

    Article  CAS  Google Scholar 

  • Kokawa N, Sotozono C, Nishida K and Kinoshita S 1996 High total TGF-beta 2 levels in normal human tears. Curr. Eye Res. 15 341–343

    Article  CAS  Google Scholar 

  • Lehmann TP, Korski K, Gryczka R, Ibbs M, Thieleman A, Grodecka-Gazdecka S and Jagodzinski PP 2015 Relative levels of let-7a, miR-17, miR-27b, miR-125a, miR-125b and miR-206 as potential molecular markers to evaluate grade, receptor status and molecular type in breast cancer. Mol. Med. Rep. 12 4692–4702

    Article  CAS  Google Scholar 

  • Li H, Yuan X, Li J and Tang X 2015 Implication of Smad2 and Smad3 in transforming growth factor-β-induced posterior capsular opacification of human lens epithelial cells. Curr. Eye Res. 40 386–397

    Article  CAS  Google Scholar 

  • Li J, Tang X and Chen X 2011 Comparative effects of TGF-β2/Smad2 and TGF-β2/Smad3 signaling pathways on proliferation, migration, and extracellular matrix production in a human lens cell line. Exp. Eye Res. 92 173–179

    Article  CAS  Google Scholar 

  • Liu B, Sun J, Lei X, Zhu Z, Pei C and Qin L 2017 MicroRNA-486–5p suppresses TGF-beta2-induced proliferation, invasion and epithelial-mesenchymal transition of lens epithelial cells by targeting Smad2. J. Biosci. 42 575–584

    Article  CAS  Google Scholar 

  • Liu F, Tai Y and Ma J 2018 LncRNA NEAT1/let-7a-5p axis regulates the cisplatin resistance in nasopharyngeal carcinoma by targeting Rsf-1 and modulating the Ras-MAPK pathway. Cancer Biol. Ther. 19 534–542

    Article  CAS  Google Scholar 

  • Liu TP, Huang CC, Yeh KT, Ke TW, Wei PL, Yang JR and Cheng YW 2016 Down-regulation of let-7a-5p predicts lymph node metastasis and prognosis in colorectal cancer: Implications for chemotherapy. Surg. Oncol. 25 429–434

    Article  CAS  Google Scholar 

  • Ma B, Kang Q, Qin L, Cui L and Pei C 2014 TGF-beta2 induces transdifferentiation and fibrosis in human lens epithelial cells via regulating gremlin and CTGF. Biochem. Biophys. Res. Commun. 447 689–695

    Article  CAS  Google Scholar 

  • Matsuura K, De Giorgi V, Schechterly C, Wang RY, Farci P, Tanaka Y and Alter HJ 2016 Circulating let-7 levels in plasma and extracellular vesicles correlate with hepatic fibrosis progression in chronic hepatitis C. Hepatology 64 732–745

    Article  CAS  Google Scholar 

  • Nishi O, Yamamoto N, Nishi K and Nishi Y 2007 Contact inhibition of migrating lens epithelial cells at the capsular bend created by a sharp-edged intraocular lens after cataract surgery. J. Cataract Refract. Surg. 33 1065–1070

    Article  Google Scholar 

  • Punga T, Bartoccioni E, Lewandowska M, Damato V, Evoli A and Punga AR 2016 Disease specific enrichment of circulating let-7 family microRNA in MuSK+ myasthenia gravis. J. Neuroimmunol. 292 21–26

    Article  CAS  Google Scholar 

  • Robertson JV, Nathu Z, Najjar A, Dwivedi D, Gauldie J and West-Mays JA 2007 Adenoviral gene transfer of bioactive TGFbeta1 to the rodent eye as a novel model for anterior subcapsular cataract. Mol. Vis. 13 457–469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saika S, Miyamoto T, Ishida I, Shirai K, Ohnishi Y, Ooshima A and McAvoy JW 2002 TGFbeta-Smad signalling in postoperative human lens epithelial cells. Br. J. Ophthalmol. 86 1428–1433

    Article  CAS  Google Scholar 

  • Saika S, Miyamoto T, Kawashima Y, Okada Y, Yamanaka O, Ohnishi Y and Ooshima A 2000 Immunolocalization of TGF-beta1, -beta2, and -beta3, and TGF-beta receptors in human lens capsules with lens implants. Graefes Arch. Clin. Exp. Ophthalmol. 238 283–293

    Article  CAS  Google Scholar 

  • Shirai K, Saika S, Tanaka T, Okada Y, Flanders KC, Ooshima A and Ohnishi Y 2006 A new model of anterior subcapsular cataract: involvement of TGFbeta/Smad signaling. Mol. Vis. 12 681–691

    CAS  PubMed  Google Scholar 

  • Tan X, Zhu Y, Chen C, Chen X, Qin Y, Qu B, Luo L, Lin H, et al., 2016 Sprouty2 suppresses epithelial-mesenchymal transition of human lens epithelial Cells through blockade of smad2 and ERK1/2 pathways. PLoS One 11 e0159275

    Article  Google Scholar 

  • Wang Y, Li W, Zang X, Chen N, Liu T, Tsonis PA and Huang Y 2013a MicroRNA-204–5p regulates epithelial-to-mesenchymal transition during human posterior capsule opacification by targeting SMAD4. Invest. Ophthalmol. Vis. Sci. 54 323–332

    Article  Google Scholar 

  • Wang YY, Ren T, Cai YY and He XY 2013b MicroRNA let-7a inhibits the proliferation and invasion of nonsmall cell lung cancer cell line 95D by regulating K-Ras and HMGA2 gene expression. Cancer Biother. Radiopharm. 28 131–137

    Article  CAS  Google Scholar 

  • Wormstone IM, Wang L and Liu CS 2009 Posterior capsule opacification. Exp. Eye Res. 88 257–269

    Article  CAS  Google Scholar 

  • Yang Y, Ye Y, Lin X, Wu K and Yu M 2013 Inhibition of pirfenidone on TGF-beta2 induced proliferation, migration and epithlial-mesenchymal transition of human lens epithelial cells line SRA01/04. PLoS One 8 e56837

    Article  CAS  Google Scholar 

  • Yao J, Yang W, Liu Y, Sun YX and Jiang Q 2012 Dexamethasone inhibits TGF-beta2-induced migration of human lens epithelial cells: implications for posterior capsule opacification prevention. Mol. Med. Rep. 5 1509–1513

    CAS  PubMed  Google Scholar 

  • Yao K, Ye PP, Tan J, Tang XJ and Shen Tu XC 2008 Involvement of PI3K/Akt pathway in TGF-beta2-mediated epithelial mesenchymal transition in human lens epithelial cells. Ophthalmic Res. 40 69–76

    Article  CAS  Google Scholar 

  • Zhang L, Wang Y, Li W, Tsonis PA, Li Z, Xie L and Huang Y 2017 MicroRNA-30a regulation of epithelial-mesenchymal transition in diabetic cataracts through targeting SNAI1. Sci. Rep. 7 1117

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Jiang.

Additional information

Communicated by Sorab Dalal.

Corresponding editor: Sorab Dalal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Jiang, B. Let-7a-5p represses proliferation, migration, invasion and epithelial-mesenchymal transition by targeting Smad2 in TGF-β2-induced human lens epithelial cells. J Biosci 45, 59 (2020). https://doi.org/10.1007/s12038-020-0001-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-020-0001-5

Keywords

Navigation