Skip to main content
Log in

The role of histone modifications in leukemogenesis

  • Mini-Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Histone modifications play a critical role in coordinating accurate gene expression. Aside from genetic mutations which cause altered DNA sequence, it has become increasingly clear that aberrant post-translational modifications of histone tails are also associated with leukemogenesis. The functional roles of specific histone marks has informed the basis of our understanding for underlying mechanisms of leukemia, while global analyses of interacting histone modifications has begun to distinguish subtypes of leukemia with prognostic and therapeutic implications. In this current era of personalized and precision medicine, it will be necessary to not only identify the specific genetic mutations present in a patient’s leukemia but to also appreciate the dynamic chromatin states which are driven by histone modifications that can aid our diagnostic and therapeutic strategies for improved management of leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Similar content being viewed by others

References

  • Audia JE and Campbell RM 2016 Histone modifications and cancer. Cold Spring Harb. Perspect. Biol. 8 a019521

  • Bannister AJ, Schneider R, Myers FA, Thorne AW, Crane-Robinson C and Kouzarides T 2005 Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J. Biol. Chem. 280 17732–17736

    Article  CAS  Google Scholar 

  • Berger SL, Kouzarides T, Shiekhattar R and Shilatifard A 2009 An operational definition of epigenetics. Genes Dev. 23 781–783

    Article  CAS  Google Scholar 

  • Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J, Krivtsov AV, Feng Z, Punt N, Daigle A, Bullinger L, Pollock RM, Richon VM, Kung AL and Armstrong SA 2011 MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 20 66–78

    Article  CAS  Google Scholar 

  • Cai SF, Chen CW and Armstrong SA 2015 Drugging chromatin in cancer: recent advances and novel approaches. Mol. Cell 60 561–570

    Article  CAS  Google Scholar 

  • Cancer Genome Atlas Research Network, Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A, Hoadley K, Triche TJ, Jr., et al. 2013 Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368 2059–2074

  • Cerveira N, Correia C, Doria S, Bizarro S, Rocha P, Gomes P, Torres L, Norton L, Borges BS, Castedo S and Teixeira MR 2003 Frequency of NUP98-NSD1 fusion transcript in childhood acute myeloid leukaemia. Leukemia 17 2244–2247

    Article  CAS  Google Scholar 

  • Chen FX, Smith ER and Shilatifard A 2018 Born to run: control of transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 19 464–478

    Article  CAS  Google Scholar 

  • Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI, Robson SC, Chung CW, et al. 2011 Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478 529–533

    Article  CAS  Google Scholar 

  • Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van S Calcar, Qu C, Ching KA, Wang W, Weng Z, Green RD, Crawford GE and Ren B 2007 Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39 311–318

    Article  CAS  Google Scholar 

  • Hu D and Shilatifard A 2016 Epigenetics of hematopoiesis and hematological malignancies. Genes Dev. 30 2021–2041

    Article  CAS  Google Scholar 

  • Jaffe JD, Wang Y, Chan HM, Zhang J, Huether R, Kryukov GV, Bhang HE, Taylor JE, et al. 2013 Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia. Nat. Genet. 45 1386–1391

    Article  CAS  Google Scholar 

  • Lund K, Adams PD and Copland M 2014 EZH2 in normal and malignant hematopoiesis. Leukemia 28 44–49

    Article  CAS  Google Scholar 

  • Nguyen AT, Taranova O, He J and Zhang Y 2011 DOT1L, the H3K79 methyltransferase, is required for MLL-AF9-mediated leukemogenesis. Blood 117 6912–6922

    Article  CAS  Google Scholar 

  • Ntziachristos P, Tsirigos A, Van P Vlierberghe, Nedjic J, Trimarchi T, Flaherty MS, Ferres-Marco D, da Ros V, Tang Z, et al. 2012 Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat. Med. 18 298–301

    Article  CAS  Google Scholar 

  • Ntziachristos P, Tsirigos A, Welstead GG, Trimarchi T, Bakogianni S, Xu L, Loizou E, Holmfeldt L, et al. 2014 Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature 514 513–517

    Article  CAS  Google Scholar 

  • Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, Potter NE, Heuser M, et al. 2016 Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 374 2209–2221

    Article  CAS  Google Scholar 

  • Piunti A and Shilatifard A 2016 Epigenetic balance of gene expression by Polycomb and COMPASS families. Science 352 aad9780

  • Popovic R and Zeleznik NJ-Le 2005 MLL: how complex does it get? J. Cell Biochem. 95 234–242

    Article  CAS  Google Scholar 

  • Rickels R and Shilatifard A 2018 Enhancer logic and mechanics in development and disease. Trends Cell Biol. 28 608–630

    Article  CAS  Google Scholar 

  • Roe JS, Mercan F, Rivera K, Pappin DJ and Vakoc CR 2015 BET bromodomain inhibition suppresses the function of hematopoietic transcription factors in acute myeloid leukemia. Mol. Cell 58 1028–1039

    Article  CAS  Google Scholar 

  • Santillan DA, Theisler CM, Ryan AS, Popovic R, Stuart T, Zhou MM, Alkan S and Zeleznik-Le NJ 2006 Bromodomain and histone acetyltransferase domain specificities control mixed lineage leukemia phenotype. Cancer Res. 66 10032–10039

    Article  CAS  Google Scholar 

  • Shilatifard A 2012 The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu. Rev. Biochem. 81 65–95

    Article  CAS  Google Scholar 

  • Shlyueva D, Stampfel G and Stark A 2014 Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15 272–286

    Article  CAS  Google Scholar 

  • Slack JM 2002 Conrad Hal Waddington: the last Renaissance biologist? Nat. Rev. Genet. 3 889–895

    Article  CAS  Google Scholar 

  • Sobulo OM, Borrow J, Tomek R, Reshmi S, Harden A, Schlegelberger B, Housman D, Doggett NA, Rowley JD and Zeleznik-Le NJ 1997 MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16)(q23;p13.3). Proc. Natl. Acad. Sci. USA 94 8732–8737

    Article  CAS  Google Scholar 

  • Wang L and Shilatifard A 2019 UTX mutations in human cancer. Cancer Cell 35 168–176

    Article  CAS  Google Scholar 

  • Yi G, Wierenga TJ A, Petraglia F, Narang P, Janssen-Megens EM, Mandoli A, Merkel A, Berentsen K, et al. 2019 Chromatin-based classification of genetically heterogeneous AMLs into two distinct subtypes with diverse stemness phenotypes. Cell Rep. 26 1059–1069 e1056

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Edwin Smith for his critical review of this manuscript and to Nicole Ethen for her figure illustration. The Shilatifard laboratory is supported in part by an Outstanding Investigator Award through the NIH’s NCI (R35CA197569).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Shilatifard.

Additional information

This article is part of the Topical Collection: Chromatin Biology and Epigenetics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birch, N.W., Shilatifard, A. The role of histone modifications in leukemogenesis. J Biosci 45, 6 (2020). https://doi.org/10.1007/s12038-019-9969-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12038-019-9969-0

Keywords

Navigation