Skip to main content
Log in

Repeated mild traumatic brain injury affects microbial diversity in rat jejunum

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Traumatic brain injuries (TBI) manifest into post-traumatic stress disorders such as anxiety comorbid with gut ailments. The perturbations in gut microbial communities are often linked to intestinal and neuropsychological disorders. We have previously reported anxiety and abnormalities in gut function in mild TBI (MTBI)-exposed rats. The current study demonstrates the changes in gut microbiome of MTBI-exposed animals and discusses its implications in intestinal health and behaviours. The rats were subjected to repeated MTBI (rMTBI) and microbial composition in jejunum was examined after 6 h, 48 h and 30 days of rMTBI. Significant reduction in bacterial diversity was observed in the rMTBI-exposed animals at all the time points. Principal coordinate analysis based on weighted UniFrac distances indicated substantial differences in gut microbial diversity and abundances in rMTBI-exposed animals as compared to that in healthy controls. The abundance of Proteobacteria increased dramatically with reciprocal decrease in Firmicutes after rMTBI. At the genus level, Helicobacter, Lactobacillus, Campylobacter, and Streptococcus were found to be differentially abundant in the jejunum of rMTBI-exposed rats as compared to sham controls indicating profound dysbiosis from the healthy state. Furthermore, substantial depletion in butyrate-producing bacterial communities was observed in rMTBI-exposed animals. These results suggest that the traumatic stress alters the gut microbiome with possible implications in gut health and neuropsychopathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Andersson AF, Lindberg M, Jakobsson H, Bäckhed F, Nyrén P and Engstrand L 2008 Comparative analysis of human gut microbiota by barcoded pyrosequencing. PloS One 3 e2836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews S 2010 FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 28 Nov 2017

  • Ayres JS, Trinidad NJ and Vance RE 2012 Lethal inflammasome activation by a multidrug-resistant pathobiont upon antibiotic disruption of the microbiota. Nat. Med. 18 799–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bäckhed F, Fraser CM, Ringel Y, Sanders ME, Sartor RB, Sherman PM, Versalovic J, Young V and Finlay BB 2012 Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe 12 611–622

    Article  CAS  PubMed  Google Scholar 

  • Bansal V, Costantini T, Kroll L, Peterson C, Loomis W, Eliceiri B, Baird A, Wolf P and Coimbra R 2009 Traumatic brain injury and intestinal dysfunction: uncovering the neuro-enteric axis. J. Neurotrauma 26 1353–1359

    Article  PubMed  PubMed Central  Google Scholar 

  • Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS, Henderson C and Flint HJ 2000 Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl. Environ. Microbiol. 66 1654–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartels LE, Jepsen P, Christensen LA, Gerdes LU, Vilstrup H and Dahlerup JF 2015 Diagnosis of Helicobacter pylori infection is associated with lower prevalence and subsequent incidence of Crohn’s disease. J. Crohns Colitis 10 443–448

    Article  PubMed  PubMed Central  Google Scholar 

  • Bercik P, Verdu EF, Foster JA, Macri J, Potter M, Huang X, Malinowski P, Jackson W, Blennerhassett P, Neufeld KA and Lu J 2010 Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 139 2102–2112

    Article  CAS  PubMed  Google Scholar 

  • Bourassa MW, Alim I, Bultman SJ and Ratan RR 2016 Butyrate, neuroepigenetics and the gut microbiome: can a high fiber diet improve brain health? Neurosci. Lett. 625 56–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bull MJ and Plummer NT 2014 Part 1: The Human Gut Microbiome in Health and Disease. Integr. Med. (Encinitas) 13 17–22

    Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI and Huttley GA 2010 QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7 335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carabotti M, Scirocco A, Maselli MA and Severi C 2015 The gut–brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 28 203

    PubMed  PubMed Central  Google Scholar 

  • Cenit MC, Sanz Y and Codoñer-Franch P 2017 Influence of gut microbiota on neuropsychiatric disorders. World J. Gastroenterol. 23 5486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen GH, Wu DP, Sun AN, Yang MZ, Wang Y, Tang XW, Chang HR, Feng YF and Zhu ZL 2008 Experimental study on IL-2-and IL-15 application in allogeneic hematopoietic stem cell transplantation. Zhonghua Xue Ye Xue Za Zhi 29 526–530

    CAS  PubMed  Google Scholar 

  • Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG and Cryan JF 2013 The microbiome–gut–brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry 18 666

    Article  CAS  PubMed  Google Scholar 

  • Comeau AM, Douglas GM and Langille MGI 2017 Microbiome Helper: a Custom and Streamlined Workflow for Microbiome Research. MSystems 2 1–11

    Article  Google Scholar 

  • Cryan JF and Dinan TG 2012 Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13 701

    Article  CAS  PubMed  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P and Andersen GL 2006 Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72 5069–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinan TG and Cryan JF 2017 Brain-gut-microbiota axis—Mood, metabolism and behavior. Nat. Rev. Gastroenterol. Hepatol. 14 69–70

    Article  CAS  PubMed  Google Scholar 

  • Drossman DA 2011 Abuse, trauma, and GI illness: Is there a link and quest. Am. J. Gastroenterol. 106 14–25.

    Article  PubMed  Google Scholar 

  • Dupont AW and Dupont HL 2011 The intestinal microbiota and chronic disorders of the gut. Nat. Rev. Gastroenterol. Hepatol. 8 523–531

    Article  PubMed  Google Scholar 

  • Esquivel-Elizondo S, Ilhan ZE, García-Peña EI and Krajmalnik-Brown R 2017 Insights into butyrate production in a controlled fermentation system via gene predictions. mSystems 2 e00051–17

  • Evrensel A and Ceylan ME 2015 The gut–brain axis: the missing link in depression. Clin. Psychopharmacol. Neurosci. 13 239–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T and Takahashi M 2013 Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504 446

    Article  CAS  PubMed  Google Scholar 

  • Grochowska M, Wojnar M and Radkowski M 2018 The gut microbiota in neuropsychiatric disorders. Acta Neurobiol. Exp. 78 69–81

    Google Scholar 

  • Hang CH, Shi JX, Li JS, Wu W and Yin HX 2003 Alterations of intestinal mucosa structure and barrier function following traumatic brain injury in rats. World J. Gastroenterol. 9 2776

    Article  PubMed  PubMed Central  Google Scholar 

  • Heijtz RD, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, Hibberd ML, Forssberg H and Pettersson S 2011 Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. USA 108 3047–3052

    Article  PubMed Central  Google Scholar 

  • Houlden A, Goldrick M, Brough D, Vizi ES, Lénárt N, Martinecz B, Roberts IS and Denes A 2016 Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behav. Immun. 57 10–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howard BM, Kornblith LZ, Christie SA, Conroy AS, Nelson MF, Campion EM, Callcut RA, Calfee CS, Lamere BJ, Fadrosh DW and Lynch S 2017 Characterizing the gut microbiome in trauma: significant changes in microbial diversity occur early after severe injury. J. Trauma Acute Care 2 e000108

    Article  Google Scholar 

  • Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow J, Reisman SE, Petrosino JF and Patterson PH 2013 Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155 1451–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M and Reddy DN 2015 Role of the normal gut microbiota. World J. Gastroenterol. 21 8787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang DW, Park JG, Ilhan ZE, Wallstrom G, LaBaer J, Adams JB and Krajmalnik-Brown R 2013 Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PloS One 8 e68322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kao CH, ChangLai SP, Chieng PU and Yen TC 1998 Gastric emptying in head-injured patients. Am. J. Gastroenterol. 93 1108

    Article  CAS  PubMed  Google Scholar 

  • Karr JE, Areshenkoff CN and Garcia-Barrera MA 2014 The neuropsychological outcomes of concussion: a systematic review of meta-analyses on the cognitive sequelae of mild traumatic brain injury. Neuropsychology 28 321–336

    Article  PubMed  Google Scholar 

  • Kharrazian D 2015 Traumatic Brain Injury and the Effect on the Brain-Gut Axis. Altern. Ther. Health Med. 21 28–32

    PubMed  Google Scholar 

  • Kopylova E, Navas-Molina JA, Mercier C, Xu ZZ, Mahé F, He Y, Zhou HW, Rognes T, Caporaso JG and Knight R 2016 Open-source sequence clustering methods improve the state of the art. Msystems 1 e00003–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S and Leonard P 2013 Richness of human gut microbiome correlates with metabolic markers. Nature 500 541

    Article  CAS  PubMed  Google Scholar 

  • Li M, Zhao Z, Yu G and Zhang J 2016 Epidemiology of Traumatic Brain Injury over the World: A Systematic Review. Austin Neurol. Neurosci. 1 1007

    Google Scholar 

  • Li H, Sun J, Du J, Wang F, Fang R, Yu C, Xiong J, Chen W, Lu Z and Liu J 2018 Clostridium butyricum exerts a neuroprotective effect in a mouse model of traumatic brain injury via the gut–brain axis. Neurogastroenterol Motil. 30 e13260

    Article  CAS  PubMed  Google Scholar 

  • Logsdon AF, Erickson MA, Rhea EM, Salameh TS and Banks WA 2018 Gut reactions: How the blood-brain barrier connects the microbiome and the brain. Exp. Biol. Med. (Maywood) 243 159–165

    Article  CAS  Google Scholar 

  • Lozupone C, Lladser ME, Knights D, Stombaugh J and Knight R 2011 UniFrac: An effective distance metric for microbial community comparison. ISME J. 5 169–172

    Article  PubMed  Google Scholar 

  • Man SM, Zhang L, Day AS, Leach ST, Lemberg DA and Mitchell H 2009 Campylobacter concisus and other Campylobacter species in children with newly diagnosed Crohn’s disease. Inflamm. Bowel Dis. 16 1008–1016

    Article  Google Scholar 

  • Martin M 2011 Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17 10

    Article  Google Scholar 

  • Mayer EA 2000 The neurobiology of stress and gastrointestinal disease. Gut 47 861–869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer EA, Tillisch K and Gupta A 2015 Gut/brain axis and the microbiota. J. Clin. Invest. 125 926–938

    Article  PubMed  PubMed Central  Google Scholar 

  • McInnes K, Friesen CL, MacKenzie DE, Westwood DA and Boe SG 2017 Mild Traumatic Brain Injury (mTBI) and chronic cognitive impairment: A scoping review. PLoS One 12 e0174847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, Bisson JF, Rougeot C, Pichelin M, Cazaubiel M and Cazaubiel JM 2011 Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr. 105 755–764

    Article  CAS  PubMed  Google Scholar 

  • Meyer DL, Davies DR, Barr JL, Manzerra P and Forster GL 2012 Mild traumatic brain injury in the rat alters neuronal number in the limbic system and increases conditioned fear and anxiety-like behaviors. Exp. Neurol. 235 574–587

    Article  PubMed  Google Scholar 

  • Mychasiuk R, Farran A, Angoa-Perez M, Briggs D, Kuhn D and Esser MJ 2014 A novel model of mild traumatic brain injury for juvenile rats. J. Vis. Exp. 94 e51820

    Google Scholar 

  • Neufeld KM, Kang N, Bienenstock J and Foster JA 2010 Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol. Motil. 23 255–264

    Article  PubMed  Google Scholar 

  • Nicholson SE, Watts LT, Burmeister DM, Merrill D, Scroggins S, Zou Y, Lai Z, Grandhi R, et al. 2018 Moderate traumatic brain injury alters the gastrointestinal microbiome in a time-dependent manner. Shock https://doi.org/10.1097/shk.0000000000001211

    Article  PubMed  Google Scholar 

  • Nishino R, Mikami K, Takahashi H, Tomonaga S, Furuse M, Hiramoto T, Aiba Y, Koga Y and Sudo N 2013 Commensal microbiota modulate murine behaviors in a strictly contamination-free environment confirmed by culture-based methods. Neurogastroenterol. Motil. 25 521–528

    Article  CAS  Google Scholar 

  • Olsen AB, Hetz RA, Xue H, Aroom KR, Bhattarai D, Johnson E, Bedi S, Cox Jr CS and Uray K 2013 Effects of traumatic brain injury on intestinal contractility. Neurogastroenterol. Motil. 25 593-463

    Article  Google Scholar 

  • O’Mahony SM, Marchesi JR, Scully P, Codling C, Ceolho AM, Quigley EM, Cryan JF and Dinan TG 2009 Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol. Psychiatry 65 263–267

    Article  PubMed  Google Scholar 

  • Papamichael K, Konstantopoulos P and Mantzaris GJ 2014 Helicobacter pylori infection and inflammatory bowel disease: is there a link? World J. Gastroenterol. 20 6374

    Article  PubMed  PubMed Central  Google Scholar 

  • Pozuelo M, Panda S, Santiago A, Mendez S, Accarino A, Santos J, Guarner F, Azpiroz F and Manichanh C 2015 Reduction of butyrate- and methane-producing microorganisms in patients with Irritable Bowel Syndrome. Sci. Rep. 5 12693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivière A, Selak M, Lantin D, Leroy F and De Vuyst L 2016 Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front. Microbiol. 7 979

    Article  PubMed  PubMed Central  Google Scholar 

  • Round JL and Mazmanian SK 2009 The gut microbiota shapes intestinal immune responses during health and disease. Nature Rev. Immunol. 9 313–323

    Article  CAS  Google Scholar 

  • Sagarkar S, Balasubramanian N, Mishra S, Choudhary AG, Kokare DM and Sakharkar AJ 2019 Repeated mild traumatic brain injury causes persistent changes in histone deacetylase function in hippocampus: Implications in learning and memory deficits in rats. Brain Res. 1711 183–192.

    Article  CAS  PubMed  Google Scholar 

  • Sagarkar S, Bhamburkar T, Shelkar G, Choudhary A, Kokare DM and Sakharkar AJ 2017a Minimal traumatic brain injury causes persistent changes in DNA methylation at BDNF gene promoters in rat amygdala: a possible role in anxiety-like behaviors. Neurobiol. Dis. 106 101–109

    Article  CAS  PubMed  Google Scholar 

  • Sagarkar S, Mahajan S, Choudhary AG, Borkar CD, Kokare DM and Sakharkar AJ 2017b Traumatic stress-induced persistent changes in DNA methylation regulate neuropeptide Y expression in rat jejunum. Neurogastroenterol. Motil. 29 e13074

    Article  CAS  Google Scholar 

  • Schmitt MG, Soergel KH and Wood CM 1976 Absorption of short chain fatty acids from the human jejunum. Gastroenterology 70 211–215

    Article  CAS  PubMed  Google Scholar 

  • Sender R, Fuchs S and Milo R 2016 Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol 14 e1002533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheh A and Fox JG 2013 The role of the gastrointestinal microbiome in Helicobacter pylori pathogenesis. Gut microbes 4 505–531

    Article  PubMed  PubMed Central  Google Scholar 

  • Shin NR, Whon TW and Bae JW 2015 Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 33 496–503

    Article  CAS  PubMed  Google Scholar 

  • Shreiner AB, Kao JY and Young VB 2015 The gut microbiome in health and in disease. Curr. Opin. Gastroenterol. 31 69–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh V, Roth S, Llovera G, Sadler R, Garzetti D, Stecher B, Dichgans M and Liesz A 2016 Microbiota dysbiosis controls the neuroinflammatory response after stroke. J. Neurosci. 36 7428–7440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith K 2013 TBI affects intestinal motility Nat. Rev. Gastroenterol. Hepatol. 10 260

    Google Scholar 

  • Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, Kubo C and Koga Y 2004 Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J. Physiol. 558 263–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan M, Zhu JC and Yin HH 2011 Enteral nutrition in patients with severe traumatic brain injury: reasons for intolerance and medical management. Br. J. Neurosurg. 25 2–8

    Article  PubMed  Google Scholar 

  • Tannock GW and Savage DC 1974 Influences of dietary and environmental stress on microbial populations in the murine gastrointestinal tract. Infect. Immun. 9 591–598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Treangen TJ, Wagner J, Burns MP and Villapol S 2018 Traumatic brain injury in mice induces acute bacterial dysbiosis within the fecal microbiome. Front. Immunol. 9 2757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremaroli V and Bäckhed F 2012 Functional interactions between the gut microbiota and host metabolism. Nature 489 242–249

    Article  CAS  PubMed  Google Scholar 

  • Vital M, Howe AC and Tiedje JM 2014 Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio 5 e00889

    Article  PubMed  PubMed Central  Google Scholar 

  • Waldecker M, Kautenburger T, Daumann H, Busch C and Schrenk D 2008 Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J. Nutr. Biochem. 19 587–593

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM and Cole JR 2007 Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73 5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whittle N and Singewald N 2014 HDAC inhibitors as cognitive enhancers in fear, anxiety and trauma therapy: where do we stand? Biochem. Soc. Trans. 42 569–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, Iwakura Y, Oshima K, Morita H, Hattori M, Honda K, Ishikawa Y, Hara E and Ohtani N 2013 Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499 97–101

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Kobert K, Flouri T and Stamatakis A 2014 PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30 614–620

    Article  CAS  PubMed  Google Scholar 

  • Zohar O, Schreiber S, Getslev V, Schwartz JP, Mullins PG and Pick CG 2003 Closed-head minimal traumatic brain injury produces long-term cognitive deficits in mice. Neuroscience 118 949–955

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Grandhi R, Patterson T and Nicholson S 2018 A Review of traumatic brain injury and the gut microbiome: insights into novel mechanisms of secondary brain injury and promising targets for neuroprotection. Brain Sci. 8 113

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from the University Grants Commission, Government of India (UGC, GOI; F.4-5/151-FRP/2014/BSR); Science and Engineering Research Board (SERB, GOI, EMR/2017/000621); Council for Scientific and Industrial Research (CSIR, GOI, 37(1718)/18/EMR-II); University Research Grant Scheme, Savitribai Phule Pune University (SPPU) and DST-PURSE, SPPU to AJS. AJS also acknowledges funds received through the Department Research and Development Program (DRDP), Department of Biotechnology, Savitribai Phule Pune University. NB thanks UGC-GOI for the award of Junior Research Fellowship (File No. 2061330923).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sneha Sagarkar or Amul Sakharkar.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matharu, D., Dhotre, D., Balasubramanian, N. et al. Repeated mild traumatic brain injury affects microbial diversity in rat jejunum. J Biosci 44, 120 (2019). https://doi.org/10.1007/s12038-019-9940-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12038-019-9940-0

Keywords

Navigation