Skip to main content

Homeostasis and dysbiosis of the gut microbiome in health and disease

Abstract

The human gastrointestinal tract (GIT) harbors taxonomically and functionally complex microbial ecosystem. The composition of the microbial species in the GIT ecosystem varies among individuals and throughout development. Both environmental factors as well as host genetics influence the composition and homeostasis of GIT microbiome. Intrinsic GIT microbiome can be characterized in terms of diversity, richness, dynamics and resilience. In healthy individual, microbial communities maintain homeostatic equilibrium and are resistant against perturbations. The resilience and resistance to perturbations of the GIT microbial ecosystem are robust but not absolute. Several factors can affect the homeostatic equilibrium of GIT microbiome and lead to dysbiotic microbiome configuration. Taxonomic and/or functional dysbiosis in the GIT microbiome is associated with numerous health disorders like inflammatory bowel disease (IBD), malnutrition, metabolic disorders, asthma and neurodegenerative diseases. In this review, we discuss our current understanding of homeostasis and dysbiosis of the microbial ecology in the human gut and health disorders that are associated with the microbiome dysbiosis.

This is a preview of subscription content, access via your institution.

Figure 1

References

  1. Acharya C and Bajaj JS 2018 The microbiome in cirrhosis and its complications. Clin. Gastroenterol. Hepatol. https://doi.org/10.1016/j.cgh.2018.08.008

    Article  PubMed  Google Scholar 

  2. Ahn J, Chen CY and Hayes RB 2012 Oral microbiome and oral and gastrointestinal cancer risk. Cancer Causes Control 23 399–404

    PubMed  PubMed Central  Google Scholar 

  3. Allen JM, Mailing LJ, Niemiro GM, Moore R, Cook MD, White BA, Holscher HD and Woods JA 2018 Exercise alters gut microbiota composition and function in lean and obese humans. Med. Sci. Sports Exerc. 50 747–757

    PubMed  Google Scholar 

  4. Anderson G, Seo M, Berk M, Carvalho AF and Maes M 2016 Gut permeability and microbiota in Parkinson’s disease: role of depression, tryptophan catabolites, oxidative and nitrosative stress and melatonergic pathways. Curr. Pharm. Des. 22 6142–6151

    CAS  PubMed  Google Scholar 

  5. Arnold IC, Dehzad N, Reuter S, Martin H, Becher B, Taube C and Muller A 2011 Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. J. Clin. Invest. 121 3088–3093

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, Campbell BJ and Abujamel T 2012 Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338 120–123

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, et al. 2011 Enterotypes of the human gut microbiome. Nature 473 174–180

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Banerjee S, Schlaeppi K and van der Heijden MGA 2018 Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16 567–576

    CAS  PubMed  Google Scholar 

  9. Bonder MJ, Kurilshikov A, Tigchelaar EF, Mujagic Z, Imhann F, Vila AV, Deelen P, Vatanen T, et al. 2016 The effect of host genetics on the gut microbiome. Nat. Genet. 48 1407–1412

    CAS  PubMed  Google Scholar 

  10. Bouskra D, Brezillon C, Berard M, Werts C, Varona R, Boneca IG and Eberl G 2008 Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456 507–510

    CAS  PubMed  Google Scholar 

  11. Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A, Stombaugh J, Knights D, Gajer P, et al. 2011 Moving pictures of the human microbiome. Genome Biol. 12 R50

    PubMed  PubMed Central  Google Scholar 

  12. Chassard C, Dapoigny M, Scott KP, Crouzet L, Del'homme C, Marquet P, Martin JC, Pickering G, et al. 2012 Functional dysbiosis within the gut microbiota of patients with constipated-irritable bowel syndrome. Aliment Pharmacol. Ther. 35 828–838

    CAS  PubMed  Google Scholar 

  13. Cho CE, Taesuwan S, Malysheva OV, Bender E, Tulchinsky NF, Yan J, Sutter JL and Caudill MA 2017 Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: a randomized controlled trial. Mol. Nutr. Food Res. https://doi.org/10.1002/mnfr.201600324

    Article  PubMed  Google Scholar 

  14. Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, Reading NC, Villablanca EJ, et al. 2012 Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149 1578–1593

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Das B, Ghosh TS, Kedia S, Rampal R, Saxena S, Bag S, Mitra R, Dayal M, et al. 2018 Analysis of the gut microbiome of rural and urban healthy Indians living in sea level and high altitude areas. Sci. Rep. 8 10104

    PubMed  PubMed Central  Google Scholar 

  16. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, et al. 2014 Diet rapidly and reproducibly alters the human gut microbiome. Nature 505 559–563

    CAS  Google Scholar 

  17. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G and Lionetti P 2010 Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Nat. Acad. Sci. USA 107 14691–14696

    PubMed  Google Scholar 

  18. Ding T and Schloss PD 2014 Dynamics and associations of microbial community types across the human body. Nature https://doi.org/10.1038/nature13178

    Article  PubMed  PubMed Central  Google Scholar 

  19. El Kaoutari A, Armougom F, Gordon JI, Raoult D and Henrissat B 2013 The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat. Rev. Microbiol. 11 497–504

    PubMed  Google Scholar 

  20. Fan X, Peters BA, Jacobs EJ, Gapstur SM, Purdue MP, Freedman ND, Alekseyenko AV, Wu J, et al. 2018 Drinking alcohol is associated with variation in the human oral microbiome in a large study of American adults. Microbiome 6 59

    PubMed  PubMed Central  Google Scholar 

  21. Flowers SA, Evans SJ, Ward KM, McInnis MG and Ellingrod VL 2017 Interaction between atypical antipsychotics and the gut microbiome in a bipolar disease cohort. Pharmacotherapy 37 261–267

    CAS  PubMed  Google Scholar 

  22. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, et al. 2015 Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528 262–266

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N and Pace NR 2007 Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Nat. Acad. Sci. USA 104 13780–13785

    CAS  PubMed  Google Scholar 

  24. Freitas AC, Bocking A, Hill JE, Money DM and VOGUE Research Group 2018 Increased richness and diversity of the vaginal microbiota and spontaneous preterm birth. Microbiome 6 117

    PubMed  PubMed Central  Google Scholar 

  25. Gao X, Zhang M, Xue J, Huang J, Zhuang R, Zhou X, Zhang H, Fu Q, et al. 2018 Body mass index differences in the gut microbiota are gender specific. Front. Microbiol. 9 1250

    PubMed  PubMed Central  Google Scholar 

  26. Ghosh TS, Sen Gupta S, Bhattacharya T, Yadav D, Barik A, Chowdhury A, Das B, Mande SS and Nair GB 2014 Gut microbiomes of Indian children of varying nutritional status. PLoS One 9 e95547

    PubMed  PubMed Central  Google Scholar 

  27. Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL, Casella G, Drew JC, Ilonen J, et al. 2011 Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 5 82–91

    CAS  PubMed  Google Scholar 

  28. Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R, Ober C, Spector TD, Bell JT, et al. 2016 Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19 731–743

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Grice EA and Segre JA 2012 The human microbiome: our second genome. Annu. Rev. Genom. Hum. Genet. 13 151–170

    CAS  Google Scholar 

  30. Hajishengallis G 2015 Periodontitis: from microbial immune subversion to systemic inflammation. Nat. Rev. Immunol. 15 30–44

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Han R, Ma J and Li H 2018 Mechanistic and therapeutic advances in non-alcoholic fatty liver disease by targeting the gut microbiota. Front. Med. https://doi.org/10.1007/s11684-018-0645-9

    Article  PubMed  Google Scholar 

  32. Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M and Michel G 2010 Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464 908–912

    CAS  PubMed  Google Scholar 

  33. Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, Lewis JD and Bushman FD 2013 Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS ONE 8 e66019

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hooper LV and Macpherson AJ 2010 Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 10 159–169

    CAS  PubMed  Google Scholar 

  35. Human Microbiome Project Consortium 2012 Structure, function and diversity of the healthy human microbiome. Nature 486 207–214

    Google Scholar 

  36. Jackson MA, Goodrich JK, Maxan ME, Freedberg DE, Abrams JA, Poole AC, Sutter JL, Welter D, et al. 2016 Proton pump inhibitors alter the composition of the gut microbiota. Gut 65 749–756

    PubMed  Google Scholar 

  37. Jiang W, Wu N, Wang X, Chi Y, Zhang Y, Qiu X, Hu Y, Li J, et al. 2015 Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci. Rep. 5 8096

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg B, Nielsen J and Backhed F 2013 Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498 99–103

    CAS  PubMed  Google Scholar 

  39. Kau AL, Ahern PP, Griffin NW, Goodman AL and Gordon JI 2011 Human nutrition, the gut microbiome and the immune system. Nature 474 327–336

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Knights D, Silverberg MS, Weersma RK, Gevers D, Dijkstra G, Huang H, Tyler AD, van Sommeren S, et al. 2014 Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med. 6 107

    PubMed  PubMed Central  Google Scholar 

  41. Koh A, De Vadder F, Kovatcheva-Datchary P and Backhed F 2016 From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165 1332–1345

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Koopman M, El Aidy S and MIDtrauma Consortium 2017 Depressed gut? The microbiota-diet-inflammation trialogue in depression. Curr. Opin. Psychiatry 30 369–377

    PubMed  Google Scholar 

  43. Kundu P, Blacher E, Elinav E and Pettersson S 2017 Our gut microbiome: the evolving inner self. Cell 171 1481–1493

    CAS  PubMed  Google Scholar 

  44. Liu J, Williams B, Frank D, Dillon SM, Wilson CC and Landay AL 2017 Inside out: HIV, the gut microbiome, and the mucosal immune system. J. Immunol. 198 605–614

    CAS  PubMed  Google Scholar 

  45. Lloyd-Price J, Abu-Ali G and Huttenhower C 2016 The healthy human microbiome. Genome Med. 8 51

    PubMed  PubMed Central  Google Scholar 

  46. Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, Brady A, Creasy HH, et al. 2017 Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 5507674 61–66

    Google Scholar 

  47. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK and Knight R 2012 Diversity, stability and resilience of the human gut microbiota. Nature 489 220–230

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE, Brochado AR, Fernandez KC, et al. 2018 Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555 623–628

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Malkki H 2014 Neurodevelopmental disorders: human gut microbiota alleviate behavioural symptoms in a mouse model of autism spectrum disorder. Nat. Rev. Neurol. 10 60

    PubMed  Google Scholar 

  50. Maloy KJ and Powrie F 2011 Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474 298–306

    CAS  PubMed  Google Scholar 

  51. Okumura R, Kurakawa T, Nakano T, Kayama H, Kinoshita M, Motooka D, Gotoh K, Kimura T, et al. 2016 Lypd8 promotes the segregation of flagellated microbiota and colonic epithelia. Nature 532 117–121

    CAS  PubMed  Google Scholar 

  52. Parracho HM, Bingham MO, Gibson GR and McCartney AL 2005 Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J. Med. Microbiol. 54 987–991

    PubMed  Google Scholar 

  53. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, et al. 2012 A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490 55–60

    CAS  PubMed  Google Scholar 

  54. Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, et al. 2001 Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2 361–367

    CAS  PubMed  Google Scholar 

  55. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, Costea PI, Godneva A, et al. 2018 Environment dominates over host genetics in shaping human gut microbiota. Nature 5557695 210–215

    Google Scholar 

  56. Salzman NH, Hung K, Haribhai D, Chu H, Karlsson-Sjoberg J, Amir E, Teggatz P, Barman M, et al. 2010 Enteric defensins are essential regulators of intestinal microbial ecology. Nat. Immunol. 11 76–83

    CAS  PubMed  Google Scholar 

  57. Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, Rostron T, Cerundolo V, et al. 2013 Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife 2 e01202

    PubMed  PubMed Central  Google Scholar 

  58. Sender R, Fuchs S and Milo R 2016 Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164 337–340

    CAS  Google Scholar 

  59. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS and Sonnenburg JL 2016 Diet-induced extinctions in the gut microbiota compound over generations. Nature 529 212–215

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Thaiss CA, Zmora N, Levy M and Elinav E 2016 The microbiome and innate immunity. Nature 535 65–74

    CAS  PubMed  Google Scholar 

  61. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER and Gordon JI 2006 An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444 1027–1031

    PubMed  Google Scholar 

  62. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, et al. 2009 A core gut microbiome in obese and lean twins. Nature 457 480–484

    CAS  PubMed  Google Scholar 

  63. Turner JR 2009 Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9 799–809

    CAS  PubMed  Google Scholar 

  64. Ursell LK and Knight R 2013 Xenobiotics and the human gut microbiome: metatranscriptomics reveal the active players. Cell Metab. 17 317–318

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Vangay P, Ward T, Gerber JS and Knights D 2015 Antibiotics, pediatric dysbiosis, and disease. Cell Host Microbe 17 553–564

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, DeSantis TZ, Ni Z, Nguyen TH, et al. 2013 Chronic kidney disease alters intestinal microbial flora. Kidney Int. 83 308–315

    PubMed  Google Scholar 

  67. Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, Carlsson CM, Asthana S, et al. 2017 Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7 13537

    PubMed  PubMed Central  Google Scholar 

  68. Walter J and Ley R 2011 The human gut microbiome: ecology and recent evolutionary changes. Annu. Rev. Microbiol. 65 411–429

    CAS  PubMed  Google Scholar 

  69. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, et al. 2011 Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472 57–63

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang Q, Li F, Liang B, Liang Y, Chen S, Mo X, Ju Y, Zhao H, et al. 2018 A metagenome-wide association study of gut microbiota in asthma in UK adults. BMC Microbiol. 18 114

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, et al. 2011 Linking long-term dietary patterns with gut microbial enterotypes. Science 334 105–108

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, et al. 2012 Human gut microbiome viewed across age and geography. Nature 486 222–227

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Yu J, Marsh S, Hu J, Feng W and Wu C 2016 The pathogenesis of nonalcoholic fatty liver disease: interplay between diet, gut microbiota, and genetic background. Gastroenterol. Res. Pract. 2016 2862173

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by grants made available from the Translational Health Science and Technology Institute (THSTI), Faridabad. The authors acknowledge T. Ramamurthy for critical readings of the manuscript.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Bhabatosh Das or G Balakrish Nair.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Das, B., Nair, G.B. Homeostasis and dysbiosis of the gut microbiome in health and disease. J Biosci 44, 117 (2019). https://doi.org/10.1007/s12038-019-9926-y

Download citation

Keywords

  • Dysbiosis
  • gastrointestinal tract
  • inflammatory bowel disease
  • metagenomics
  • microbiome