Skip to main content
Log in

Import of human miRNA-RISC complex into Plasmodium falciparum and regulation of the parasite gene expression

  • Brief communication
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

During its life cycle, the malarial parasite Plasmodium goes through different asexual stages in human blood, and asexual and sexual stage in mosquito. Expression of stage-specific proteins is important for successful completion of its life cycle and requires tight gene regulation. In case of Plasmodium, due to relative paucity of the transcription factors, it is postulated that post-transcriptional regulation plays an important role in stage-specific gene expression. Although miRNA-mediated gene regulation has been well-established to function in post-transcriptional regulation in many eukaryotes, existence of such a phenomenon or the presence of miRNA-associated factors in Plasmodium remains unclear. A number of miRNAs are shown to be imported into Plasmodium falciparum from erythrocytes and role of these miRNAs is not understood. Here we show that human Argonaute 2 (hAgo2) a component of the miRISC complex is imported by P. falciparum. In the parasite hAgo2 exists as in a complex with specific human miRNAs like let-7a and miR15a which can potentially target the Plasmodium genes Rad54 and Lipid/sterol:H+ symporter respectively. We show that hAgo2 associates with Rad54, Lipid/sterol:H+ symporter and other P. falciparum transcripts. These results highlight the existence of a mechanism by which malarial parasite imports hAgo2-miRNA complex from the host cells to regulate its gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

References

  • Azzouzi I, Moest H, Wollscheid B, Schmugge M, Eekels JJM and Speer O 2015 Deep sequencing and proteomic analysis of the microRNA-induced silencing complex in human red blood cells. Exp. Hematol. 43 382–392

    Article  CAS  Google Scholar 

  • Baum J, Papenfuss AT, Mair GR, Janse CJ, Vlachou D, Waters AP, Cowman AF, Crabb BS, De Koning-Ward TF and Koning-ward TF De 2009 Molecular genetics and comparative genomics reveal RNAi is not functional in malaria parasites. Nucleic Acids Res. 37 3788–3798

    Article  CAS  Google Scholar 

  • Chakrabarti K, Pearson M, Grate L, Sterne-weiler T, Deans J, Donohue JP and Jr Ares M 2007 Structural RNAs of known and unknown function identified in malaria parasites by comparative genomics and RNA analysis. RNA 13 1923–1939

    Article  CAS  Google Scholar 

  • Chen S, Wang Y, Telen MJ and Chi J 2008 The genomic analysis of erythrocyte microRNA expression in sickle cell diseases. PLoS One 3 e2360 1–13

    Google Scholar 

  • Coulson RMR, Hall N and Ouzounis CA 2004 Comparative genomics of transcriptional control in the human malaria parasite Plasmodium falciparum. Genome Res. 14 1548–1554

    Article  CAS  Google Scholar 

  • Dechering KJ, Cuelenaere K, Konings RNH and Leunissen JAM 1998 Distinct frequency-distributions of homopolymeric DNA tracts in different genomes. Nucleic Acids Res. 26 4056–4062

    Article  CAS  Google Scholar 

  • Didiano D and Hobert O 2008 Molecular architecture of a miRNA-regulated 3′UTR. RNA 14 1297–1317

    Article  CAS  Google Scholar 

  • Filipowicz W, Bhattacharyya SN and Sonenberg N 2008 Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9 102–114

    Article  CAS  Google Scholar 

  • Foth BJ, Zhang N, Mok S, Preiser PR and Bozdech Z 2008 Quantitative protein expression profiling reveals extensive post-transcriptional regulation and post-translational modifications in schizont-stage malaria parasites. Genome Biol. 9 R177.1-18

    Article  Google Scholar 

  • Hall N, Karras M, Raine JD, Carlton JM, Kooij TWA, Berriman M, Florens L, Janssen CS, Pain A, Christophides GK, et al. 2005 A comprehensive survey of the plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 307 82–87

    Article  CAS  Google Scholar 

  • Kannan M and Atreya C 2010 Differential profiling of human red blood cells during storage for 52 selected microRNAs. Transfusion 50 1581–1588

    Article  CAS  Google Scholar 

  • Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R and Frank W 2010 Transcriptional control of gene expression by MicroRNAs. Cell 140 111–122

    Article  CAS  Google Scholar 

  • Koncarevic S, Rohrbach P, Deponte M, Krohne G, Helena J, Yates J, Rahlfs S and Becker K 2009 The malarial parasite Plasmodium falciparum imports the human protein peroxiredoxin 2 for peroxide detoxification. Proc. Natl. Acad. Sci. USA 106 13323–13328

    Article  Google Scholar 

  • Kooij TWA and Matuschewski K 2007 Triggers and tricks of Plasmodium sexual development. Curr. Opin. Microbiol. 10 547–553

    Article  CAS  Google Scholar 

  • Lacsina JR, LaMonte G, Nicchitta C V and Chi J-T 2011 Polysome profiling of the malaria parasite Plasmodium falciparum. Mol. Biochem. Parasitol. 179 42–46

    Article  CAS  Google Scholar 

  • Lamonte G, Philip N, Reardon J, Lacsina JR, Majoros W, Chapman L, Thornburg CD, Telen MJ, Ohler U, Nicchitta C V, et al. 2012 Translocation of sickle cell erythrocyte MicroRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host Microbe 12 187–199

    Article  CAS  Google Scholar 

  • Mantel PY, Hoang AN, Goldowitz I, Potashnikova D, Hamza B, Vorobjev I, Ghiran I, Toner M, Irimia D, Ivanov AR, et al. 2013 Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. Cell Host Microbe 13 521–534

    Article  CAS  Google Scholar 

  • Mantel PY, Hjelmqvist D, Walch M, Kharoubi-Hess S, Nilsson S, Ravel D, Ribeiro M, Grüring C, Ma S, Padmanabhan P, et al. 2016 Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria. Nat. Commun. 7 12727

    Article  CAS  Google Scholar 

  • Ofir-Birin Y, Heidenreich M and Regev-Rudzki N 2017 Pathogen-derived extracellular vesicles coordinate social behaviour and host manipulation. Semin. Cell Dev. Biol. 67 83–90

    Article  Google Scholar 

  • Radfar A, Méndez D, Moneriz C, Linares M, Marín-garcía P, Puyet A, Diez A and Bautista JM 2009 Synchronous culture of Plasmodium falciparum at high parasitemia levels. Nat. Protoc. 4 1899–1915

    Article  CAS  Google Scholar 

  • Regev-Rudzki N, Wilson DW, Carvalho TG, Sisquella X, Coleman BM, Rug M, Bursac D, Angrisano F, Gee M, Hill AF, et al. 2013 Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell 153 1120–1133

    Article  CAS  Google Scholar 

  • Saliba KJ, Folb PI and Smith PJ 1998 Role for the Plasmodium falciparum digestive vacuole in chloroquine resistance. Biochem. Pharmacol. 56 313–320

    Article  CAS  Google Scholar 

  • Saraiya AA and Wang CC 2008 snoRNA a novel precursor of microRNA in Giardia lamblia. PLoS Pathog. 4 e1000224 1-10

    Google Scholar 

  • Trager W and Jensen JB 1976 Human malaria parasites in continuous culture. Science 193 673–675

    Article  CAS  Google Scholar 

  • Wang Z, Xi J, Hao X, Deng W, Liu J, Wei C, Gao Y, Zhang L and Wang H 2017 Red blood cells release microparticles containing human argonaute 2 and miRNAs to target genes of Plasmodium falciparum. Emerg. Microbes Infect. 6 e75 1-11

    Google Scholar 

  • Xue X, Zhang Q, Huang Y, Feng L and Pan W 2008 No miRNA were found in Plasmodium and the ones identified in erythrocytes could not be correlated with infection. Malar. J. 6 1–6

    Google Scholar 

  • Zhou X, Duan ÆX, Qian ÆJ and, Microrna K 2009 Abundant conserved microRNA target sites in the 5′-untranslated region and coding sequence. Genetica 137 159–164

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Swati Patankar for the gift of 3D7 culture. This work has been funded by the grant to VS from NCCS (intramural) and Department of Science and Technology, Government of India (EMR/2014/001093). VD was supported by fellowship from Department of Biotechnology, India and AV was supported fellowship from Council for Scientific and Industrial Research, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasudevan Seshadri.

Additional information

Communicated by Tapas Kumar Kundu.

Corresponding editor: Tapas Kumar Kundu

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 637 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dandewad, V., Vindu, A., Joseph, J. et al. Import of human miRNA-RISC complex into Plasmodium falciparum and regulation of the parasite gene expression. J Biosci 44, 50 (2019). https://doi.org/10.1007/s12038-019-9870-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-019-9870-x

Keywords

Navigation