Skip to main content
Log in

Biosynthesis of some organic acids and lipids in industrially important microorganisms is promoted by pyruvate carboxylases

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Pyruvate carboxylase (Pyc) catalyzes formation of oxaloacetic acid from pyruvic acid by fixing one mole of CO2. Many evidences have confirmed that biosynthesis of some different kinds of organic acids and intracellular and extracellular lipids is driven by Pyc and over-expression of the PYC gene in the industrial microorganisms can promote production of the different kinds of organic acids and intracellular and extracellular lipids. Therefore, the Pyc from different sources is regarded as a key enzyme in microbial biotechnology and is an important target for metabolic engineering of the industrial microbial strains. However, very little is known about the native Pycs and their functions and regulation in the industrial microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Angumeenal AR and Venkappayya D 2013 An overview of citric acid production. LWT - Food Sci. Technol. 50 367–370

    Article  CAS  Google Scholar 

  • Brown SH, Bashkirova L, Berka LR, Chandler T, Tammy D, Keith M, Michael M, Sarah M, Sheryl T, Debbie Y and Alan B 2013 Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid. Appl. Microbiol. Biotechnol. 97 8903–8912

    Article  CAS  Google Scholar 

  • Chen X, Xu G, Xu N, Zou W, Zhu P, Liu L and Chen J 2013 Metabolic engineering of Torulopsis glabrata for malate production. Metab. Eng. 19 10–16

    Article  CAS  Google Scholar 

  • Chi Z, Wang ZP, Wang GY, Khan I and Chi ZM 2016a Microbial biosynthesis and secretion of L-malic acid and its applications. Crit. Rev. Biotechnol. 36 99–107

    Article  CAS  Google Scholar 

  • Chi Z, Liu GL, Liu CG and Chi ZM 2016b Poly(β-L-malic acid) (PMLA) from Aureobasidium spp. and its current proceedings. Appl. Microbiol. Biotechnol. 100 3841–3851

    Article  CAS  Google Scholar 

  • Fu WJ, Chi Z, Ma ZC, Zhou HX, Liu GL, Lee CF and Chi ZM 2015 Hydrocarbons, the advanced biofuels produced by different organisms, the evidence that alkanes in petroleum can be renewable. Appl. Microbiol. Biotechnol. 99 7481–7494

    Article  CAS  Google Scholar 

  • Fu GY, Wang GY, Chi Z, Liu GL and Chi ZM 2016 Enhanced citric acid production by over-expression of pyruvate carboxylase gene in the marine-derived yeast Yarrowia lipolytica. Mar. Biotechnol. 18 1–14

    Article  CAS  Google Scholar 

  • Garay LA, Sitepu IR, Cajka T, Xu J, The HE, German JB, Pan Z, Dungan SR, Block D and Boundy-Mills KL 2018 Extracellular fungal polyol lipids: a new class of potential high value lipids. Biotechnol. Adv. 36 397–414

    Article  CAS  Google Scholar 

  • Gokarn RR, Eiteman MA and Altman E 1998 Expression of pyruvate carboxylase enhances succinate production in Escherichia coli without affecting glucose uptake. Biotechnol. Lett. 20 795–798

    Article  CAS  Google Scholar 

  • Gokarn RR, Evans JD, Walker JR, Martin SA, Eiteman MA and Altman E 2001 The physiological effects and metabolic alterations caused by the expression of Rhizobium etli pyruvate carboxylase in Escherichia coli. Appl. Microbiol. Biotechnol. 56 188–195

    Article  CAS  Google Scholar 

  • Guo X, Wang J, Xie X, Xu Q, Zhang C and Chen N 2013 Enhancing the supply of oxaloacetate for L-glutamate production by pyc overexpression in different Corynebacterium glutamicum. Biotechnol. Lett. 35 943–950

    Article  CAS  Google Scholar 

  • Jiang M, Ma J, Wang Y, Yu L and Huang X 2010 Novel constructed high-yield fumaric acid gene engineering bacterium and method for producing fumaric acid thereby. CN101240259

  • Jitrapakdee S, Maurice MST, Rayment I, Cleland WW, John C, Wallace JC and Attwood PV 2008 Structure, mechanism and regulation of pyruvate carboxylase. Biochem. J. 413 369–387

    Article  CAS  Google Scholar 

  • Karaffa L and Kubice CP 2003 Aspergillus niger citric acid accumulation: do we understand this well working black box? Appl. Microbiol. Biotechnol. 61 189–196

    Article  CAS  Google Scholar 

  • Li Y, Chi Z, Wang GY, Wang ZP, Liu GL, Lee CF, Ma ZC and Chi ZM 2015 Taxonomy of Aureobasidium spp. and biosynthesis and regulation of their extracellular polymers. Crit. Rev. Microbiol. 41 228–237

    Article  CAS  Google Scholar 

  • Liu XY, Chi Z, Liu GL, Wang F, Madzak C and Chi ZM 2010 Inulin hydrolysis and citric acid production from inulin using the surface-engineered Yarrowia lipolytica displaying inulinase. Metab. Eng. 12 469–476

    Article  CAS  Google Scholar 

  • Liu XY, Chi Z, Liu GL, Madzak C and Chi ZM 2013 Both decrease in ACL1 gene expression and increase in ICL1 gene expression in marine-derived yeast Yarrowia lipolytica expressing INU1 gene enhance citric acid production from inulin. Mar. Biotechnol. 15 26–36

    Article  CAS  Google Scholar 

  • Ma Y, Wang GY, Liu GL, Wang ZP and Chi ZM 2013a Overproduction of poly(β-malic acid) (PMA) from glucose by a novel Aureobasidium sp. P6 strain isolated from mangrove system. Appl. Microbiol. Biotechnol. 97 8931–8939

    Article  CAS  Google Scholar 

  • Ma J, Gou D, Liang L, Liu R, Chen X, Zhang C, Zhang J, Chen K and Jiang M 2013b Enhancement of succinate production by metabolically engineered Escherichia coli with co-expression of nicotinic acid phosphoribosyltransferase and pyruvate carboxylase. Appl. Microbiol. Biotechnol. 97 6739–6747

    Article  CAS  Google Scholar 

  • Menefee AL and Zeczycki TN 2014 Nearly 50 years in the making: defining the catalytic mechanism of the multifunctional enzyme, pyruvate carboxylase. FEBS J. 281 1333–1354

    Article  CAS  Google Scholar 

  • Okino S, Noburyu R, Suda M, Jojima T, Inui M and Yukawa H 2008 An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl. Microbiol. Biotechnol. 81 459–464

    Article  CAS  Google Scholar 

  • Peleg Y, Battat E, Scrutton MC and Goldberg I 1989 Isoenzyme pattern and subcellular localization of enzymes involved in fumaric acid accumulation by Rhizopus oryzae. Appl. Microbiol. Biotechnol. 32 334–339

    Article  CAS  Google Scholar 

  • Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Möckel B, Sahm H and Eikmanns BJ 2001 Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J. Mol. Microbiol. Biotechnol. 3 295–300

    CAS  PubMed  Google Scholar 

  • Sanchez AM, Bennett GN and San KY 2005 Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant. Biotechnol. Prog. 21 358–365

    Article  CAS  Google Scholar 

  • Straathof AJJ and van Gulik WM 2012 Production of fumaric acid by fermentation; in: Reprogramming microbial metabolic pathways, subcellular biochemistry 64 (eds) Wang X et al. (©Springer Science + Business Media Dordrecht, The Netherlands) pp 225–240

    Google Scholar 

  • Tan MJ, Chen X, Wang YK, Liu GL and Chi ZM 2016 Enhanced citric acid production by a yeast Yarrowia lipolytica over-expressing a pyruvate carboxylase gene. Bioprocess Biosyst. Eng. 39 1289–1296

    Article  CAS  Google Scholar 

  • Tang RR, Chi Z, Jiang H, Liu GL, Xue SJ, Hu Z and Chi ZM 2018 Overexpression of a pyruvate carboxylase gene enhances extracellular liamocin and intracellular lipid biosynthesis by Aureobasidium melanogenum M39. Process Biochem. 69 64–74

    Article  CAS  Google Scholar 

  • Wang W, Li ZM, Xie JL and Ye Q 2009 Production of succinate by a pflB ldhA double mutant of Escherichia coli overexpressing malate dehydrogenase. Bioprocess Biosyst. Eng. 32 737–745

    Article  CAS  Google Scholar 

  • Wang GY, Zhang Y, Chi Z, Liu GL, Wang ZP and Chi ZM 2015 Role of pyruvate carboxylase in accumulation of intracellular lipid of the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. Appl. Microbiol. Biotechnol. 99 1637–1645

    Article  CAS  Google Scholar 

  • Xu G, Chen X, Liu L and Jiang L 2013 Fumaric acid production in Saccharomyces cerevisiae by simultaneous use of oxidative and reductive routes. Bioresour. Technol. 148 91–96

    Article  CAS  Google Scholar 

  • Yang JG, Wang ZW, Zhu NQ, Wang BY, Chen T and Zhao XM 2014 Metabolic engineering of Escherichia coli and in silico comparing of carboxylation pathways for high succinate productivity under aerobic conditions. Microbiol. Res. 169 432–440

    Article  CAS  Google Scholar 

  • Yin X, Madzak C, Du G, Zhou J and Chen J 2012 Enhanced alpha-ketoglutaric acid production in Yarrowia lipolytica WSH-Z06 by regulation of the pyruvate carboxylation pathway. Appl. Microbiol. Biotechnol. 96 1527–1537

    Article  CAS  Google Scholar 

  • Zelle RM, de Hulster E and van Winden WA 2008 Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl. Environ. Microbiol. 74 2766–2777

    Article  CAS  Google Scholar 

  • Zhang H, Cai J and Dong J 2011 High-level production of poly(β-Lmalic acid) with a new isolated Aureobasidium pullulans strain. Appl. Microbiol. Biotechnol. 92 295–303

    Article  CAS  Google Scholar 

  • Zheng H, Ohno Y, Nakamori T and Suye S 2009 Production of L-malic acid with fixation of HCO -3 by malic enzyme-catalyzed reaction based on regeneration of coenzyme on electrode modified by layer-by-layer self-assembly method. J. Biosci. Bioeng. 107 16–20

    Article  CAS  Google Scholar 

  • Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers JV and Nielsen J 2016 Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat. Commun. 7 11709

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 31770061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Ming Chi.

Additional information

Communicated by BJ Rao.

Corresponding editor: BJ Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, SF., Chi, Z., Liu, GL. et al. Biosynthesis of some organic acids and lipids in industrially important microorganisms is promoted by pyruvate carboxylases. J Biosci 44, 47 (2019). https://doi.org/10.1007/s12038-019-9853-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-019-9853-y

Keywords

Navigation